Abstract:
A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
Abstract:
A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
Abstract:
Methods and apparatuses for reducing directional stress in an orthotropic encapsulation member of an electronic package may include attaching a stiffening frame to a carrier, the stiffening frame comprising a central opening to accept a semiconductor chip and a plurality of opposing sidewalls, electronically coupling the semiconductor chip to the carrier concentrically arranged within the central opening, and thermally contacting a directional heat spreader to the semiconductor chip, the directional heat spreader transferring heat from the semiconductor chip, wherein the directional heat spreader is shaped to reduce a directional stress along the opposing bivector direction.
Abstract:
A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
Abstract:
A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
Abstract:
A technique relates to an electronic package. A substrate is configured to receive a chip. A stiffener is attached to the substrate. The stiffener includes a core material with a first material formed on opposing sides of the core material.
Abstract:
A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
Abstract:
A multi-chip electronic package and methods of manufacture are provided. The multi-chip package includes a plurality of chips mounted on a chip carrier. The multi-chip package further includes a lid mounted on the chip carrier using a bonding material or compression seal, and at least one single piston extending from the lid. Each piston covers an entirety of multiple chips of the plurality of chips.
Abstract:
A multi-chip electronic package and methods of manufacture are provided. The method includes adjusting a piston position of one or more pistons with respect to one or more chips on a chip carrier. The adjusting includes placing a chip shim on the chips and placing a seal shim between a lid and the chip carrier. The seal shim is thicker than the chip shim. The adjusting further includes lowering the lid until the pistons contact the chip shim. The method further includes separating the lid and the chip carrier and removing the chip shim and the seal shim. The method further includes dispensing thermal interface material on the chips and lowering the lid until a gap filled with the thermal interface material is about a particle size of the thermal interface material. The method further includes sealing the lid to the chip carrier with sealant.