Abstract:
A computer system comprises a processor unit arranged to run a hypervisor running one or more virtual machines; a cache connected to the processor unit and comprising a plurality of cache rows, each cache row comprising a memory address, a cache line and an image modification flag; and a memory connected to the cache and arranged to store an image of at least one virtual machine. The processor unit is arranged to define a log in the memory and the cache further comprises a cache controller arranged to set the image modification flag for a cache line modified by a virtual machine being backed up, but not for a cache line modified by the hypervisor operating in privilege mode; periodically check the image modification flags; and write only the memory address of the flagged cache rows in the defined log.
Abstract:
A computer system comprises a processor unit arranged to run a hypervisor running one or more virtual machines; a cache connected to the processor unit and comprising a plurality of cache rows, each cache row comprising a memory address, a cache line and an image modification flag; and a memory connected to the cache and arranged to store an image of at least one virtual machine. The processor unit is arranged to define a log in the memory and the cache further comprises a cache controller arranged to set the image modification flag for a cache line modified by a virtual machine being backed up, but not for a cache line modified by the hypervisor operating in privilege mode; periodically check the image modification flags; and write only the memory address of the flagged cache rows in the defined log.
Abstract:
In an approach for provisioning a server utilizing a virtual consistency group, a processor receives a request to provision a first server utilizing a first application consistency group, wherein the first application consistency group is a virtualized consistency group. A processor defines a storage consistency group. A processor assigns the first application consistency group to the storage consistency group. A processor provisions the first server. A processor assigns to the provisioned first server, storage specified by the first application consistency group.
Abstract:
Memory page de-duplication in a computer system that includes a plurality of virtual machine partitions managed by a hypervisor, where each virtual machine is assigned a different dedicated memory partition, may include: identifying, by the hypervisor, a plurality of identical memory pages in memory of one or more dedicated memory partitions; assigning, by the hypervisor, one of the identical memory pages as a master page; mapping, for each virtual machine having an identical memory page, each of the identical memory pages to the master page; and directing, by the hypervisor, reads of the memory page to the master page.
Abstract:
Disclosed is a computer system (100) comprising a processor unit (110) adapted to run a virtual machine in a first operating mode; a cache (120) accessible to the processor unit, said cache including a cache controller (122); and a memory (140) accessible to the cache controller for storing an image of said virtual machine; wherein the processor unit is adapted to create a log (200) in the memory prior to running the virtual machine in said first operating mode; the cache controller is adapted to transfer a modified cache line from the cache to the memory; and write only the memory address of the transferred modified cache line in the log; and the processor unit is further adapted to update a further image of the virtual machine in a different memory location, e.g. on another computer system, by retrieving the memory addresses stored in the log, retrieve the modified cache lines from the memory addresses and update the further image with said modifications. A computer cluster including such computer systems, a method of managing such a computer cluster and a computer program product are also disclosed.
Abstract:
Profile properties in a partition profile are user-configurable through a management entity such as a management console. A partition manager calculates a secondary processing unit entitlement for a logical partition based in part on a secondary processing unit mode property in the partition profile. The secondary processing unit entitlement may be smaller than a primary processing unit entitlement for the logical partition. The partition manager reserves processing units from a secondary shared processor pool equal to the logical partition's secondary entitlement for the logical partition. The primary and secondary processing unit entitlements may be stored in primary and secondary configuration data structures associated with the logical partition. The partition manager may relocate the logical partition to the secondary shared processor pool in response to a predetermined condition.
Abstract:
A partition manager relocates a logical partition from a primary shared processor pool to a secondary shared processor pool in response to a predetermined condition, such as a hardware failure. The relocated logical partition is allocated a smaller quantity of processing units from the secondary pool than it was allocated from the primary pool. A quantity of processing units reserved for a second logical partition is identified in the secondary shared processor pool, and a portion of those reserved processing units are allocated to the relocated logical partition. The reserved processing units may be redistributed among multiple relocated logical partitions.
Abstract:
Disclosed is a computer system (100) comprising a processor unit (110) adapted to run a virtual machine in a first operating mode; a cache (120) accessible to the processor unit, said cache including a cache controller (122); and a memory (140) accessible to the cache controller for storing an image of said virtual machine; wherein the processor unit is adapted to create a log (200) in the memory prior to running the virtual machine in said first operating mode; the cache controller is adapted to transfer a modified cache line from the cache to the memory; and write only the memory address of the transferred modified cache line in the log; and the processor unit is further adapted to update a further image of the virtual machine in a different memory location, e.g. on another computer system, by retrieving the memory addresses stored in the log, retrieve the modified cache lines from the memory addresses and update the further image with said modifications. A computer cluster including such computer systems, a method of managing such a computer cluster and a computer program product are also disclosed.
Abstract:
Techniques for simulating exclusive use of a processor core amongst multiple logical partitions (LPARs) include providing hardware thread-dependent status information in response to access requests by the LPARs that is reflective of exclusive use of the processor by the LPAR accessing the hardware thread-dependent information. The information returned in response to the access requests is transformed if the requestor is a program executing at a privilege level lower than the hypervisor privilege level, so that each logical partition views the processor as though it has exclusive use of the processor. The techniques may be implemented by a logical circuit block within the processor core that transforms the hardware thread-specific information to a logical representation of the hardware thread-specific information or the transformation may be performed by program instructions of an interrupt handler that traps access to the physical register containing the information.
Abstract:
A method, executed by a computer, for allocating resources includes assigning resiliency attributes to a server having a workload, linking each server to a partner resource, duplicating the workload of each server in an offsite location accessible to the partner resource, detecting a disaster event, and transferring the workload of the server automatically to the partner resource. In some embodiments, the partner resource is a plurality of pool servers. The partner resource may be calculated by performing a capacity analysis. The partner resource may not a specifically assigned resource until a disaster occurs. In some embodiments, the workload is duplicated such that the recovery point objective of the workload is minimized. A computer program product and computer system corresponding to the methods are also disclosed herein.