Abstract:
A high-voltage LDMOS device with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming a continuous gate structure over a deep well region and a body of a substrate. The method further includes forming oppositely doped, alternating segments in the continuous gate structure. The method further includes forming a contact in electrical connection with a tip of the continuous gate structure and a drain region formed in the substrate. The method further includes forming metal regions in direct electrical contact with segments of at least one species of the oppositely doped, alternating segments.
Abstract:
A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region and partially overlaps the drift region. A conformal dielectric layer is on the top surface and forms a mesa above the gate conductor. The conformal dielectric layer has a conformal etch-stop layer embedded therein. Contact studs extend through the dielectric layer and the etch-stop layer, and are connected to the source region, drain region, and gate conductor. A source electrode contacts the source contact stud, a gate electrode contacts the gate contact stud, and a drain electrode contacts the drain contact stud. A drift electrode is over the drift region.
Abstract:
A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region, and partially overlaps the drift region. Floating gate pieces are over the STI structure. A conformal dielectric layer is on the top surface and on the gate conductor and floating gate pieces and forms a mesa above the gate conductor and floating gate pieces. A conformal etch-stop layer is embedded within the conformal dielectric layer. A drift electrode is formed on the conformal etch-stop layer over, relative to the top surface, the drift region. The drift electrode has a variable thickness relative to the top surface.
Abstract:
A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region, and partially overlaps the drift region. Floating gate pieces are over the STI structure. A conformal dielectric layer is on the top surface and on the gate conductor and floating gate pieces and forms a mesa above the gate conductor and floating gate pieces. A conformal etch-stop layer is embedded within the conformal dielectric layer. A drift electrode is formed on the conformal etch-stop layer over, relative to the top surface, the drift region. The drift electrode has a variable thickness relative to the top surface.
Abstract:
High-voltage LDMOS devices with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming an array of poly islands and a control gate structure by patterning a poly layer formed over a deep well region and a body of a substrate. The method further includes forming a metal shield in contact with the control gate structure and over the array of poly islands.
Abstract:
A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region and partially overlaps the drift region. A conformal dielectric layer is on the top surface and forms a mesa above the gate conductor. The conformal dielectric layer has a conformal etch-stop layer embedded therein. Contact studs extend through the dielectric layer and the etch-stop layer, and are connected to the source region, drain region, and gate conductor. A source electrode contacts the source contact stud, a gate electrode contacts the gate contact stud, and a drain electrode contacts the drain contact stud. A drift electrode is over the drift region.
Abstract:
Various embodiments include field effect transistor (FET) structures and methods of forming such structures. In various embodiments, an FET structure includes: a deep n-type well; an shallow n-type well and a p-type well each within the deep n-type well; and a shallow trench isolation (STI) region within the shallow n-type well, the STI region including: a first section having a first depth within the shallow n-type well as measured from an upper surface of the shallow n-type well; and a second section contacting and overlying the first section, the second section having a second depth within the shallow n-type well as measured from the upper surface of the shallow n-type well.
Abstract:
High-voltage LDMOS devices with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming an array of poly islands and a control gate structure by patterning a poly layer formed over a deep well region and a body of a substrate. The method further includes forming a metal shield in contact with the control gate structure and over the array of poly islands.
Abstract:
Disclosed are a field effect transistor (FET) (e.g., a lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET)) and a method of forming the FET. In the FET, an etch stop pad is on a semiconductor substrate (e.g., a P-type silicon substrate). A semiconductor layer (e.g., a silicon layer) is also on the substrate and extends laterally over the etch stop pad. A first well region (e.g., an N-well region) extends through the semiconductor layer into the substrate such that it contains the etch stop pad. A second well region (e.g., a P-well region) is in the first well region aligned above the etch stop pad. A source region (e.g., a N-type source region) is in the second well region. A buried isolation region (e.g., a buried air-gap isolation region) is within the first well region aligned below the etch stop pad so as to limit vertical capacitor formation.
Abstract:
Various embodiments include field effect transistor (FET) structures and methods of forming such structures. In various embodiments, an FET structure includes: a deep n-type well; a shallow n-type well within the deep n-type well; and a shallow trench isolation (STI) region within the shallow n-type well, the STI region including: a first section having a first depth within the shallow n-type well as measured from an upper surface of the shallow n-type well, and a second section contacting and overlying the first section, the second section having a second depth within the shallow n-type well as measured from the upper surface of the shallow n-type well.