Abstract:
Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
Abstract:
A method fabricates a lateral non-volatile storage cell. The lateral non-volatile storage cell includes a first transistor including a first transistor body formed on a dielectric layer. The first transistor includes a source region and drain region on opposite sides of the first transistor body. A second transistor is laterally adjacent to the first transistor and includes a second transistor body, parallel with the first transistor body, formed on the dielectric layer. A first layer of gate oxide of a first thickness is formed over the first transistor body, and a second layer of gate oxide of a second thickness is formed over a portion of the second transistor body. The first thickness and the second thickness are different. A floating gate is formed over the first layer of gate oxide, the second layer of gate oxide, and the dielectric layer.
Abstract:
A wafer structure includes a diffractive lens disposed on a backside of a wafer and coupled to a front side waveguide, the diffractive lens being configured to receive light and focus the light to the front side waveguide.
Abstract:
Various particular embodiments include an optical structure, including: a photonic microring including an integral signal detector for detecting a level of an optical signal in the photonic microring; and a controller, coupled to the signal detector, for selectively adjusting a resonant frequency of the photonic microring based on the detected level of the optical signal in the photonic microring.
Abstract:
Various particular embodiments include a primary waveguide including an end section; cantilevered waveguides, each cantilevered waveguide including an end section disposed adjacent the end section of the primary waveguide; and control pins for applying an electrical bias to the cantilevered waveguides to selectively displace the end sections of the cantilevered waveguides away from the end section of the primary waveguide.
Abstract:
A structure that provides a diffusion barrier between two doped regions. The structure includes a diffusion barrier including a semiconductor layer comprising a first doped region and a second doped region; and a diffusion barrier separating the first doped region and the second doped region, wherein the diffusion barrier comprises a doped portion and a notch above the doped portion.
Abstract:
Approaches for a comparative ESD protection scheme are provided. An electrostatic discharge (ESD) clamping circuit includes: a discharge field effect transistor (FET) connected between a power supply node and ground; and a comparator that receives a divided power supply voltage at a first input and a reference voltage at a second input. The comparator outputs a first value that turns the discharge FET on when the divided power supply voltage is greater than the reference voltage. The comparator outputs a second value that turns the discharge FET off when the divided power supply voltage is less than or equal to the reference voltage.
Abstract:
Various embodiments include an integrated circuit having: at least one waveguide disposed in a low refractive index layer; a splitter connected to the at least one waveguide, the splitter consisting of at least two signal paths; an optical signal detector connected to an end of each of the at least two signal paths; and an electrical disconnect member connected to each optical signal detector.
Abstract:
A device includes a laterally diffused metal-oxide-semiconductor (LDMOS) device integrated with an optical modulator. An optical waveguide of the optical modulator includes a silicon-containing structure in a drift region of the LDMOS device.
Abstract:
A high-voltage LDMOS device with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming a continuous gate structure over a deep well region and a body of a substrate. The method further includes forming oppositely doped, alternating segments in the continuous gate structure. The method further includes forming a contact in electrical connection with a tip of the continuous gate structure and a drain region formed in the substrate. The method further includes forming metal regions in direct electrical contact with segments of at least one species of the oppositely doped, alternating segments.