摘要:
Male sterility is imparted to a plant by a cascade of gene sequences which expresses a protein which disrupts the biosynthesis of viable pollen. Expression of the disrupter protein is restricted to male parts of the plant by an upstream promoter sequence which is specific to male flowers, the male specific promoter being under control of an operator sequence. The cascade also includes a gene encoding a repressor protein specific for that operator. Expression of the repressor protein is under control of a chemically inducible promoter which is inducible by the application to the plant by, spraying or like process, of an exogenous chemical. In the absence of the exogenous chemical inducer, no repressor protein is expressed, resulting in expression of the disrupter protein and, consequently, male sterility. Fertility may be restored to the plant, when required for maintenance of the line, by spraying with the inducer, resulting in expression of the repressor which binds the operator and inhibits expression of the disrupter protein.
摘要:
The chemically-inducible 27 kD subunit of the enzyme glutathione-S-transferase, isoform II (GST-II-27) and sequences encoding it are provided. In particular, a genomic DNA sequence encoding the gene promoter for the GST-II-27 subunit is provided. Then linked to an exogenous gene and introduced into a plant by transformation, and GST-II-27 promoter provides a means for the external regulation of expression of that exogenous gene. Transformation with DNA encoding glutathione-S-transferase polypeptides produces herbicide resistance transgenic plants.
摘要:
Male sterility is imparted to a plant by a cascade of gene sequences which expresses a protein which disrupts the biosynthesis of viable pollen. Expression of the disrupter protein is restricted to male parts of the plant by an upstream promoter sequence which is specific to male flowers, the male specific promoter being under control of an operator sequence. The cascade also includes a gene encoding a repressor protein specific for that operator. Expression of the repressor protein is under control of a chemically inducible promoter which is inducible by the application to the plant by, spraying or like process, of an exogenous chemical. In the absence of the exogenous chemical inducer, no repressor protein is expressed, resulting in expression of the disrupter protein and, consequently, male sterility. Fertility may be restored to the plant, when required for maintenance of the line, by spraying with the inducer, resulting in expression of the repressor which binds the operator and inhibits expression of the disrupter protein.
摘要:
Pseudo-operator sequences may be located in (or inserted into) plant genomes and utilized to drive expression of foreign genes. These pseudo-operator sequences are nucleotide sequences which are present at a suitable location in a gene at which repressor binding will lead to inhibitation or enhancement of gene expression. The disclosed technique permits the design of altered specificity repressors, which bind the pseudo-operators.
摘要:
The chemically-inducible 27 kD subunit of the enzyme glutathione-S-transferase, isoform II (GST-II-27) and sequences encoding it are provided. In particular, a genomic DNA sequence encoding the gene promoter for the GST-II-27 subunit is provided. Then linked to an exogenous gene and introduced into a plant by transformation, and GST-II-27 promoter provides a means for the external regulation of expression of that exogenous gene. Transformation with DNA encoding glutathione-S-transferase polypeptides produces herbicide resistance transgenic plants.
摘要:
Plants, particularly cereal plants, which have altered ability to synthesise starch are produced by inserting into the genome of the plant a gene encoding an enzyme of the starch biosynthetic pathway such that capacity to produce starch is improved or reduced. The gene encoding the enzyme ADP-glucose pyrophosphorylase has been isolated from wheat leaf and wheat endosperm tissue. The enzyme is essential to the biosynthesis of starch in plants. Addition of extra copies of the gene to a plant by transformation enhances starch production, increasing the food value of the crop. Conversely, insertion of a gene encoding mRNA antisense to the mRNA encoded by the endogenous ADP-glucose pyrophosphorylase gene will reduce starch production. cDNA sequences are provided which may be used to identify homologous sequences in other tissue and in other plants. The ADP-glucose pyrophosphorylase gene promoter may be used in the genetic manipulation of plants to alter their starch-synthesising ability.