摘要:
The present memory device includes first and second electrodes, a passive layer between the first and second electrodes; and an active layer between the first and second electrodes, the active layer being of dendrimeric material which provides passages through the active layer.
摘要:
The present memory device includes first and second electrodes, a passive layer between the first and second electrodes; and an active layer between the first and second electrodes, the active layer being of dendrimeric material which provides passages through the active layer.
摘要:
The present invention is a method of undertaking a procedure on a memory-diode, wherein a memory-diode is provided which is programmable so as to have each of a plurality of different threshold voltages. A reading of the state of the memory-diode indicates the so determined threshold voltage of the memory-diode.
摘要:
The present memory structure includes first and second electrodes, a passive layer, and an active layer containing nitrogen, the passive and active layers being between the first and second electrodes. Metal ions in the active layer bind to the nitrogen thereof, enhancing retention of the metal ions in the active layer for improved, stable data retention.
摘要:
A system and method are disclosed for processing an organic memory cell. An exemplary system can employ an enclosed processing chamber, a passive layer formation component operative to form a passive layer on a first electrode, and an organic semiconductor layer formation component operative to form an organic semiconductor layer on the passive layer. A wafer substrate is not needed to transfer from a passive layer formation system to an organic semiconductor layer formation system. The passive layer is not exposed to air after formation of the passive layer and before formation of the organic semiconductor layer. As a result, conductive impurities caused by the exposure to air do not occur in the thin film layer, thus improving productivity, quality, and reliability of organic memory devices. The system can further employ a second electrode formation component operative to form a second electrode on the organic semiconductor layer.
摘要:
In the present electronic structure, a first electronic device includes a first pair of electrodes and an active layer between the first pair of electrodes. An organic transistor is made up of organic material, a source, a drain, and a gate, one of the first pair of electrodes being connected to one of the source and drain of the organic transistor. A second electronic device includes a second pair of electrodes and an active layer between the second pair of electrodes, one of the second pair of electrodes being in contact with an insulating body adjacent the organic transistor.
摘要:
The present memory device includes first and second electrodes, a passive layer between the first and second electrodes and an active layer between the first and second electrodes, the active layer being of a material containing randomly oriented pores which are interconnected to form passages through the active layer.
摘要:
A memory element includes a first electrode, a passive layer on and in contact with the first electrode, a polyfluorene active layer on and in contact with the active layer, and a second electrode on and in contact with the polyfluorene active layer. The chemical structure of the polyfluorene active layer may be altered to take different forms, each providing a different memory element operating characteristic.
摘要:
The subject invention provides systems and methods that facilitate formation of semiconductor memory devices comprising memory cells with one or more injecting bilayer electrodes. Memory arrays generally comprise bit cells that have two discrete components; a memory element and a selection element, such as, for example, a diode. The invention increases the efficiency of a memory device by forming memory cells with selection diodes comprising a bilayer electrode. Memory cells are provided comprising bilayer cathodes and/or bilayer anodes that facilitate a significant improvement in charge injection into the diode layers of memory cells. The increased charge (e.g. electrons or holes) density in the diode layers of the selected memory cells results in improved memory cell switching times and lowers the voltage required for the memory cell to operate, thereby, creating a more efficient memory cell.
摘要:
The present invention relates to multi-layered organic light emitting diode devices having hole-injection and/or hole-transport layers comprising aryl amine compounds with relatively high glass transition temperatures (i.e., thermostable aryl amine compounds). Such multi-layered OLED devices allow for a staircase change in the energy difference of holes and electrons as they migrate from the electrodes toward the emitter layer, resulting in a lower operating voltage and a high quantum yield of luminescence for a given current density. The present invention also relates to microdisplay devices comprising multi-layered organic light emitting diode devices having hole-injection and/or hole-transport layers comprising thermostable aryl amine compounds.