摘要:
The present invention provides a novel method for detection and/or genotyping of nucleic acids that utilizes the specificity of an AP endonuclease. In addition, the present invention provides a novel method for nucleic acid amplification.
摘要:
The present invention provides a novel method for detection and/or genotyping of nucleic acids that utilizes the specificity of an AP endonuclease. In addition, the present invention provides a novel method for nucleic acid amplification.
摘要:
The present invention provides a novel method for detection and/or genotyping of nucleic acids that utilizes the specificity of an AP endonuclease. In addition, the present invention provides a novel method for nucleic acid amplification.
摘要:
The present invention provides a novel method for nucleic acid amplification. The method includes contacting the sample with at least one forward primer and at least one reverse primer, an AP endonuclease, and a nucleic acid polymerase. under conditions sufficient to allow the forward and reverse primers to hybridize to the target nucleic acid and form a reaction mixture, wherein at least one of the forward and reverse primer includes an AP endonuclease-cleavable linker L, and incubating the reaction mixture under reaction conditions that simultaneously allow the AP endonuclease to cleave at a linker site L and the extension of the primers in a template-specific manner to amplify the target nucleic acid sequence.
摘要:
Oligonucleotides in which one or more purine residues are substituted by pyrazolo[3,4-d]pyrimidines exhibit improved hybridization properties. Oligonucleotides containing pyrazolo[3,4-d]pyrimidine base analogues have higher melting temperatures than unsubstituted oligonucleotides of identical sequence. Thus, in assays involving hybridization of an oligonucleotide probe to a target polynucleotide sequence, higher signals are obtained. In addition, mismatch discrimination is enhanced when pyrazolo[3,4-d]pyrimidine-containing oligonucleotides are used as hybridization probes, making them useful as probes and primers for hybridization, amplification and sequencing procedures, particularly those in which single- or multiple-nucleotide mismatch discrimination is required.
摘要:
Oligonucleotide probes/conjugates are provided along with method for their use in assays to monitor amplification wherein the signal produced does not rely on 5′ nuclease digestion.
摘要:
The invention provides compositions and methods for improved hybridization analysis utilizing DNA, RNA, PNA and chimeric oligomers in which one or more purine bases are substituted by a pyrazolo[5,4-d]pyrimidine or by a 7-deazapurine purine analogue. Reduced self-aggregation and reduced fluorescence quenching are obtained when the oligomers are used in various methods involving hybridization. Methods of synthesis, as well as novel synthetic precursors, are also provided.
摘要:
A triplex forming oligonucleotide is complementary pursuant to the G/T or A/G recognition motif to a homopurine, or substantially homopurine target sequence in double stranded nucleic acids, and at least one and preferably all of the guanine bases are replaced by their pyrazolo[3,4-d]pyrimidine analog, namely by 6-amino-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one. The oliginucleotides containing the pyrazolo[3,4-d]pyrimidine analog of guanine exhibit a lesser degree of self-association, and lack the nucleophilic nitrogen atom in the 7 position of guanine. The latter feature results in a diminished extent of self-crosslinking in ODNs which also have a covalently attached cross-linking agent.
摘要:
Minor groove binding molecules are covalently bound to oligonucleotides which in their base sequence are complementary to a target sequence of single stranded or double stranded DNA, RNA or hybrids thereof. The covalently bound oligonucleotide minor groove binder conjugates strongly bind to the target sequence of the complementary strand.
摘要:
Conjugates between a minor groove binding molecule, such as the trimer of 1,2-dihydro-(3H)-pyrrolo[3,2-e]indole-7-carboxylate (CDPI3), and an oligonucleotide form unusually stable hybrids with complementary target sequences, in which the tethered CDPI3 group resides in the minor groove of the duplex. These conjugates can be used as probes and primers. Due to their unusually high binding affinity, conjugates as short as 8-mers can be used as amplification primers with high specificity and efficiency. MGB conjugation also increases the discriminatory power of short oligonucleotides, providing enhanced detection of nucleotide sequence mismatches by short oligonucleotides. The MGB-conjugated probes and primers described herein facilitate various analytic and diagnostic procedures, such as amplification reactions, PCR, detection of single-nucleotide polymorphisms, gene hunting, differential display, fluorescence energy transfer, hydrolyzable probe assays and others; by allowing the use of shorter oligonucleotides, which have higher specificity and better discriminatory power.