摘要:
The present invention describes Photolabile Compounds methods for use of the compounds. The Photolabile Compounds have a photoreleasable ligand, which can be biologically active, and which is photoreleased from the compound upon exposure to light. In some embodiments, the Photolabile Compounds comprise a light antenna, such as a labeling molecule or an active derivative thereof. In one embodiment, the light is visible light, which is not detrimental to the viability of biological samples, such as cells and tissues, in which the released organic molecule is bioactive and can have a therapeutic effect. In another embodiment, the photoreleasable ligand can be a labeling molecule, such as a fluorescent molecule.
摘要:
A resistive sense memory apparatus includes a bipolar select device having a semiconductor substrate and a plurality of transistors disposed in the semiconductor substrate and forming a row or transistors. Each transistor includes an emitter contact and a collector contact. Each collector contact is electrically isolated from each other and each emitter contact is electrically isolated from each other. A gate contact extends along a channel region between the emitter contact and a collector contact. A base contact is disposed within the semiconductor substrate such that the emitter contact and a collector contact is between the gate contact and the base contact. A resistive sense memory cells is electrically coupled to each collector contact or emitter contact and a bit line.
摘要:
The present invention overcomes all the above drawbacks and provides a versatile method for the fabrication of multilayer hollow tubes that uses a layer-by-layer rod dipping approach using different biomaterials. The device enables fine control over fabrication parameters, such as ascending/descending speeds, rod rotational velocity, and crosslinking or polymerization time. All these technologies allows the generation of more complex multilayer hollow tubes such as vessel-like structures, urethral grafting, prostate grafting and the like.
摘要:
The present invention is generally directed to an apparatus with embedded (bottom side) control lines for vertically stacked semiconductor elements. In accordance with various embodiments, a first semiconductor wafer is provided with a first facing surface on which a first conductive layer is formed. The first semiconductor wafer is attached to a second semiconductor wafer to form a multi-wafer structure, the second semiconductor wafer having a second facing surface on which a second conductive wafer is formed. The first conductive layer is contactingly bonded to the second conductive layer to form an embedded combined conductive layer within said structure. Portions of the combined conductive layer are removed to form a plurality of spaced apart control lines that extend in a selected length or width dimension through said structure.
摘要:
Apparatus and method for providing overcurrent protection to a resistive random access memory (RRAM) cell during an RRAM formation process used to prepare the cell for normal read and write operations. In accordance with various embodiments, the RRAM cell is connected between a first control line and a second control line, and an active protection device (APD) is connected between the second control line and an electrical ground terminal. A formation current is applied through the RRAM cell, and an activation voltage is concurrently applied to the APD to maintain a maximum magnitude of the formation current below a predetermined threshold level.
摘要:
Method and apparatus for reading data from a non-volatile memory cell, such as a modified STRAM cell. In some embodiments, at least a first and second memory cell are read for a plurality of resistance values that are used to select and store a voltage reference for each memory cell.
摘要:
Method and apparatus for reading data from a non-volatile memory cell, such as a modified STRAM cell. In some embodiments, at least a first and second memory cell are read for a plurality of resistance values that are used to select and store a voltage reference for each memory cell.
摘要:
Apparatus and method for providing overcurrent protection to a resistive random access memory (RRAM) cell during an RRAM formation process used to prepare the cell for normal read and write operations. In accordance with various embodiments, the RRAM cell is connected between a first control line and a second control line, and an active protection device (APD) is connected between the second control line and an electrical ground terminal. A formation current is applied through the RRAM cell, and an activation voltage is concurrently applied to the APD to maintain a maximum magnitude of the formation current below a predetermined threshold level
摘要:
In one embodiment, an integrated circuit includes a PMOS transistor having a gate stack comprising a P+ doped gate polysilicon layer and a nitrided gate oxide (NGOX) layer. The NGOX layer may be over a silicon substrate. The integrated circuit further includes an interconnect line formed over the transistor. The interconnect line includes a hydrogen getter material and may comprise a single material or stack of materials. The interconnect line advantageously getters hydrogen (e.g., H2 or H2O) that would otherwise be trapped in the NGOX layer/silicon substrate interface, thereby improving the negative bias temperature instability (NBTI) lifetime of the transistor.
摘要翻译:在一个实施例中,集成电路包括具有包括P +掺杂栅极多晶硅层和氮化栅极氧化物(NGOX)层的栅极堆叠的PMOS晶体管。 NGOX层可以在硅衬底之上。 集成电路还包括形成在晶体管上的互连线。 互连线包括吸氢材料,并且可以包括单一材料或材料堆。 互连线有利地吸收否则将被捕获在NGOX层/硅衬底界面中的氢(例如,H 2 H 2或H 2 O 2),从而提高负偏压温度 晶体管的不稳定性(NBTI)寿命。
摘要:
The present invention is generally directed to an apparatus with embedded (bottom side) control lines for vertically stacked semiconductor elements. In accordance with various embodiments, a first semiconductor wafer is provided with a first facing surface on which a first conductive layer is formed. The first semiconductor wafer is attached to a second semiconductor wafer to form a multi-wafer structure, the second semiconductor wafer having a second facing surface on which a second conductive wafer is formed. The first conductive layer is contactingly bonded to the second conductive layer to form an embedded combined conductive layer within said structure. Portions of the combined conductive layer are removed to form a plurality of spaced apart control lines that extend in a selected length or width dimension through said structure.