Abstract:
In an example, a first hard mask is formed on a first surface of a semiconductor body, wherein first openings in the first hard mask expose first surface sections and second openings in the first hard mask expose second surface sections. First dopants of a first conductivity type are implanted selectively through the first openings into the semiconductor body. Second dopants of a second conductivity type are implanted selectively through the second openings into the semiconductor body. The second conductivity type is complementary to the first conductivity type. A second hard mask is formed that covers the first surface sections and the second surface sections, wherein third openings in the second hard mask expose third surface sections and fourth openings in the second hard mask expose fourth surface sections. Third dopants of the first conductivity type are implanted selectively through the third openings into the semiconductor body. Fourth dopants of the second conductivity type are implanted selectively through the fourth openings into the semiconductor body.
Abstract:
A semiconductor device includes a transistor. The transistor may include a gate electrode in gate trenches formed in a first portion of a silicon carbide substrate and extending in a first horizontal direction. The gate trenches pattern the first portion into ridges. The transistor may further include a source region, a channel region, and a drift region. The source region, channel region and part of the drift region may be arranged in the ridges. A current path from the source region to the drift region may extend in a depth direction of the silicon carbide substrate. The transistor may further include a body contact portion arranged in a second portion of the silicon carbide substrate. The second portion is adjacent to the first portion and extends in a second horizontal direction intersecting the first horizontal direction.
Abstract:
A semiconductor device includes a contact metallization layer arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, and an organic passivation layer. The organic passivation layer is located between the contact metallization layer and the inorganic passivation structure, and located vertically closer to the semiconductor substrate than a part of the organic passivation layer located on top of the inorganic passivation structure.
Abstract:
A method of forming a semiconductor device includes providing a base substrate comprising SiC and a growth surface extending along a plane that is angled relative to a first crystallographic plane of the SiC from the base substrate, forming first and second trenches in the base substrate that extend from the growth surface into the base substrate, epitaxially forming a first SiC layer on the growth surface of the base substrate by a step-controlled epitaxy technique, and epitaxially forming a second SiC layer on the first SiC layer, wherein the first SiC layer is a layer of α-SiC, and wherein the second SiC layer is a layer of β-SiC.
Abstract:
A semiconductor device includes a contact metallization layer arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, and an organic passivation layer. The organic passivation layer is located between the contact metallization layer and the inorganic passivation structure, and located vertically closer to the semiconductor substrate than a part of the organic passivation layer located on top of the inorganic passivation structure.
Abstract:
A semiconductor device according to an embodiment is at least partially arranged in or on a substrate and includes a recess forming a mesa, wherein the mesa extends along a direction into the substrate to a bottom plane of the recess and includes a semiconducting material of a first conductivity type, the semiconducting material of the mesa including at least locally a first doping concentration not extending further into the substrate than the bottom plane. The semiconductor device further includes an electrically conductive structure arranged at least partially along a sidewall of the mesa, the electrically conductive structure forming a Schottky or Schottky-like electrical contact with the semiconducting material of the mesa, wherein the substrate comprises the semiconducting material of the first conductivity type comprising at least locally a second doping concentration different from the first doping concentration along a projection of the mesa into the substrate.
Abstract:
A semiconductor device includes a contact metallization layer that includes aluminum and is arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, an organic passivation layer comprising a first part that is arranged on the contact metallization layer, and a second part that is arranged on the inorganic passivation structure, a first layer structure including a first part that is in contact with the contact metallization layer, a second part that is contact with the inorganic passivation structure, and a third part that is disposed on the semiconductor substrate laterally between the inorganic passivation structure and the organic passivation layer.
Abstract:
A transistor device and a method for forming a transistor device are disclosed. The transistor device includes: a SiC semiconductor body that includes a first semiconductor layer and a second semiconductor layer formed on top of the first semiconductor; a trench structure extending from a first surface of the semiconductor body through the second semiconductor layer into the first semiconductor layer; a drain region arranged in the first semiconductor layer; and a plurality of transistor cells each coupled between the drain region and a source node. The trench structure subdivides the second semiconductor layer into a plurality of mesa regions and includes at least one cavity. At least one of the plurality of transistor cells is at least partially integrated in each of the mesa regions.
Abstract:
A semiconductor device includes a contact metallization layer that includes aluminum and is arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, an organic passivation layer comprising a first part that is arranged on the contact metallization layer, and a second part that is arranged on the inorganic passivation structure, a first layer structure including a first part that is in contact with the contact metallization layer, a second part that is contact with the inorganic passivation structure, and a third part that is disposed on the semiconductor substrate laterally between the inorganic passivation structure and the organic passivation layer.
Abstract:
A semiconductor device according to an embodiment is at least partially arranged in or on a substrate and includes a recess forming a mesa, wherein the mesa extends along a direction into the substrate to a bottom plane of the recess and includes a semiconducting material of a first conductivity type, the semiconducting material of the mesa including at least locally a first doping concentration not extending further into the substrate than the bottom plane. The semiconductor device further includes an electrically conductive structure arranged at least partially along a sidewall of the mesa, the electrically conductive structure forming a Schottky or Schottky-like electrical contact with the semiconducting material of the mesa, wherein the substrate comprises the semiconducting material of the first conductivity type comprising at least locally a second doping concentration different from the first doping concentration along a projection of the mesa into the substrate.