Abstract:
A method of producing a semiconductor module arrangement includes providing a first subassembly having a number N1 of first adjustment openings, a second subassembly having a number N2 of second adjustment openings and a third subassembly having a plurality of adjustment pins which are fixedly connected to one another, the first subassembly, the second subassembly and the third subassembly being independent of one another and not connected to one another. The first subassembly, the second subassembly and the third subassembly are arranged relative to one another in such a way that each of the adjustment pins engages into one of the first adjustment openings and/or into one of the second adjustment openings.
Abstract:
A semiconductor module arrangement is provided having a first subassembly, a second subassembly and a third subassembly. The third subassembly has a quantity of adjustment pins which are fixedly connected to one another. The first subassembly has a number N1 of first adjustment openings, and the second subassembly has a number N2 of second adjustment openings. Each of the adjustment pins engages into a different one of the first adjustment openings and/or into one of the second adjustment openings. A corresponding method of producing the semiconductor module arrangement is also provided.
Abstract:
A method of producing a semiconductor module arrangement includes providing a first subassembly having a number N1 of first adjustment openings, a second subassembly having a number N2 of second adjustment openings and a third subassembly having a plurality of adjustment pins which are fixedly connected to one another, the first subassembly, the second subassembly and the third subassembly being independent of one another and not connected to one another. The first subassembly, the second subassembly and the third subassembly are arranged relative to one another in such a way that each of the adjustment pins engages into one of the first adjustment openings and/or into one of the second adjustment openings.
Abstract:
A semiconductor module arrangement is provided having a first subassembly, a second subassembly and a third subassembly. The third subassembly has a quantity of adjustment pins which are fixedly connected to one another. The first subassembly has a number N1 of first adjustment openings, and the second subassembly has a number N2 of second adjustment openings. Each of the adjustment pins engages into a different one of the first adjustment openings and/or into one of the second adjustment openings. A corresponding method of producing the semiconductor module arrangement is also provided.
Abstract:
A method for soldering a circuit carrier to a carrier plate includes providing a carrier plate having an upper side and a first adjusting device, providing a circuit carrier having an underside and a second adjusting device, providing a solder and placing the circuit carrier onto the carrier plate in such a way that: the underside of the circuit carrier faces the upper side of the carrier plate; the solder is arranged between the carrier plate and the circuit carrier; and the first adjusting device forms a stop for the second adjusting device that limits a displacement of the circuit carrier placed on the carrier plate along the upper side of the carrier plate. After placing the circuit carrier onto the carrier plate, the solder is melted and subsequently cooled down until it solidifies and connects the circuit carrier to the carrier plate in a material-bonding manner at a lower metallization layer.
Abstract:
A method for producing a semiconductor module arrangement includes providing a semiconductor module and a printed circuit board. The semiconductor module has a circuit mount populated with a semiconductor chip, an adjustment device in a first relative position with respect to the circuit mount, and a plurality of electrical connections each of which has a free end. Each of the connections is routed through a different passage opening in the adjustment device. The printed circuit board is pushed onto the electrical connections by each of the free ends being inserted into a different contact opening in the printed circuit board. The adjustment device is moved to a second relative position, which is different from the first relative position, with respect to the circuit mount.
Abstract:
A method for producing a semiconductor module arrangement includes providing a semiconductor module and a printed circuit board. The semiconductor module has a circuit mount populated with a semiconductor chip, an adjustment device in a first relative position with respect to the circuit mount, and a plurality of electrical connections each of which has a free end. Each of the connections is routed through a different passage opening in the adjustment device. The printed circuit board is pushed onto the electrical connections by each of the free ends being inserted into a different contact opening in the printed circuit board. The adjustment device is moved to a second relative position, which is different from the first relative position, with respect to the circuit mount.