Abstract:
This invention relates to an optical system and method for performing turbidity assay, e.g. coagulation of blood or plasma, comprising a standard optical reference, a sample handling structure, a light source and an optical detection unit. The standard optical reference, such as a fluorophore-doped glass, provides constant optical signal under controlled optical conditions. The sample handling structure, such as a microfluidic system with reaction chamber, can be placed beneath or above the standard optical reference. During operation, the coagulating plasma/blood changes its optical absorbance and reflection properties, which results in changes in optical signal that reaches the optical reading unit. The variation of the optical signal, such as fluorescence signal indicates the kinetics of the turbidity varying process, such as plasma/blood coagulation process. This invention is used for performing turbidity assay with optical system, including photometry system, fluorescence system, Raman Spectroscopy system and so on.
Abstract:
An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.
Abstract:
Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.
Abstract:
An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.
Abstract:
A device and method for analyte detection and analytes in a particulate bearing fluid such as whole blood having an instrument for partitioning the particles from the fluid that is integrated with a detector for analyses of one or more particulate bearing fluid analytes while the particles in the particulate bearing fluid are partitioned.
Abstract:
A device and method for analyte detection and analytes in a particulate bearing fluid such as whole blood having an instrument for partitioning the panicles from the fluid that is integrated with a detector for analyses of one or more particulate bearing fluid analytes while the particles in the particulate bearing fluid are partitioned.
Abstract:
Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.
Abstract:
Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.
Abstract:
Analyte content in a cell free portion of a body fluid, such as blood, is optically determined without centrifugation or other preliminary steps for separating the cell free portion from the body fluid. A channel is configured for containing a flowing sample of the body fluid along an optical boundary. The channel is configured so that a cell free layer of the fluid naturally forms along the boundary of the channel which coincides with the optical boundary. A light source is directed onto the optical boundary at an angle selected to generate total reflection from the boundary and to generate an evanescent field across the boundary in the cell free layer of fluid. A light detector is configured to detect absorption of the light in the evanescent field. The light source and light detector are matched to the wavelength range of an absorption peak of the analyte being detected.
Abstract:
Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.