Pillar resistor structures for integrated circuitry

    公开(公告)号:US09748327B2

    公开(公告)日:2017-08-29

    申请号:US15129794

    申请日:2014-06-18

    Abstract: Integrated circuit structures including a pillar resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor over the substrate. Following embodiments herein, a small resistor footprint may be achieved by orienting the resistive length orthogonally to the substrate surface. In embodiments, the vertical resistor pillar is disposed over a first end of a conductive trace, a first resistor contact is further disposed on the pillar, and a second resistor contact is disposed over a second end of a conductive trace to render the resistor footprint substantially independent of the resistance value. Formation of a resistor pillar may be integrated with a replacement gate transistor process by concurrently forming the resistor pillar and sacrificial gate out of a same material, such as polysilicon. Pillar resistor contacts may also be concurrently formed with one or more transistor contacts.

    III-N METAL-INSULATOR-SEMICONDUCTOR FIELD EFFECT TRANSISTORS WITH MULTIPLE GATE DIELECTRIC MATERIALS

    公开(公告)号:US20200091285A1

    公开(公告)日:2020-03-19

    申请号:US16130911

    申请日:2018-09-13

    Abstract: Integrated circuits with III-N metal-insulator-semiconductor field effect transistor (MISFET) structures that employ one or more gate dielectric materials that differ across the MISFETs. Gate dielectric materials may be selected to modulate dielectric breakdown strength and/or threshold voltage between transistors. Threshold voltage may be modulated between two MISFET structures that may be substantially the same but for the gate dielectric. Control of the gate dielectric material may render some MISFETs to be operable in depletion mode while other MISFETs are operable in enhancement mode. Gate dielectric materials may be varied by incorporating multiple dielectric materials in some MISFETs of an IC while other MISFETs of the IC may include only a single dielectric material. Combinations of gate dielectric material layers may be selected to provide a menu of low voltage, high voltage, enhancement and depletion mode MISFETs within an IC.

Patent Agency Ranking