摘要:
A low-GIDL current MOSFET device structure and a method of fabrication thereof which provides a low-GIDL current. The MOSFET device structure contains a central gate conductor whose edges may slightly overlap the source/drain diffusions, and left and right side wing gate conductors which are separated from the central gate conductor by a thin insulating and diffusion barrier layer.
摘要:
A MOSFET fabrication methodology and device structure, exhibiting improved gate activation characteristics. The gate doping that may be introduced while the source drain regions are protected by a damascene mandrel to allow for a very high doping in the gate conductors, without excessively forming deep source/drain diffusions. The high gate conductor doping minimizes the effects of electrical depletion of carriers in the gate conductor. The MOSFET fabrication methodology and device structure further results in a device having a lower gate conductor width less than the minimum lithographic minimum image, and a wider upper gate conductor portion width which may be greater than the minimum lithographic image. Since the effective channel length of the MOSFET is defined by the length of the lower gate portion, and the line resistance is determined by the width of the upper gate portion, both short channel performance and low gate resistance are satisfied simultaneously.
摘要:
A method for forming a uniform layered structure comprising an ultra-thin layer of amorphous silicon and its thermal oxide is disclosed. In one aspect, a method for forming a nanolaminate of silicon oxide on a substrate is disclosed. In another aspect, a method for forming a patterned hard mask on a substrate is disclosed. The patterned hard mask includes a nanolaminate of silicon and silicon oxide. The methods are characterized by the oxidation of an amorphous silicon layer using atomic oxygen.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate STI fill material. The STI regions are formed in the substrate layer and impose forces on adjacent substrate areas. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance are achieved.
摘要:
A method for improving the gate activation of metal oxide semiconductor field effect transistor (MOSFET) structures are provided. The method of the present invention includes the steps of forming a plurality of patterned gate stacks atop a layer of gate dielectric material; forming a first planarizing organic film on the gate dielectric material and abutting vertical sidewalls of the patterned gate stacks, said planarizing organic film not being present on top, horizontal surfaces of each of the patterned gate stacks; blocking some of the plurality of patterned gate stacks with a first resist, while leaving other patterned gate stacks of said plurality unblocked; implanting first ions into the unblocked patterned gate stacks; removing the first resist and first planarizing organic film and forming a second planarizing organic film and blocking the previously unblocked patterned gate stacks with a second resist; implanting second ions into the patterned gate stacks that are not blocked by said second resist; and removing the second resist and the second planarizing organic film.
摘要:
Disclosed is a method of protecting a semiconductor shallow trench isolation (STI) oxide from etching, the method comprising lowering, if necessary, the upper surface of said STI oxide to a level below that of adjacent silicon active areas, depositing a nitride liner upon said STI oxide and adjacent silicon active areas in a manner effective in defining a depression above said STI oxide, filling said depression with a protective film, and removing said nitride layer from said adjacent active areas.
摘要:
A low-GIDL current MOSFET device structure and a method of fabrication thereof which provides a low-GIDL current. The MOSFET device structure contains a central gate conductor whose edges may slightly overlap the source/drain diffusions, and left and right side wing gate conductors which are separated from the central gate conductor by a thin insulating and diffusion barrier layer.
摘要:
A method of fabricating a semiconductor transistor device comprises the steps as follows. Provide a semiconductor substrate with a gate dielectric layer thereover and a lower gate electrode structure formed over the gate dielectric layer with the lower gate electrode structure having a lower gate top. Form a planarizing layer over the gate dielectric layer leaving the gate top of the lower gate electrode structure exposed. Form an upper gate structure over the lower gate electrode structure to form a T-shaped gate electrode with an exposed lower surface of the upper gate surface and exposed vertical sidewalls of the gate electrode. Remove the planarizing layer. Form source/drain extensions in the substrate protected from the short channel effect. Form sidewall spacers adjacent to the exposed lower surface of the upper gate and the exposed vertical sidewalls of the T-shaped gate electrode. Form source/drain regions in the substrate. Form silicide layers on top of the T-shaped gate electrode and above the source/drain regions.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate gate sidewall spacer material disposed above a device channel region wherein the spacers are formed adjacent both the gate and the substrate and impose forces on adjacent substrate areas. Another embodiment comprises compressive stresses imposed in the plane of the channel using SOI sidewall spacers made of polysilicon that is expanded by oxidation. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance have been demonstrated.
摘要:
The speed of CMOS circuits is improved by imposing a longitudinal tensile stress on the NFETs and a longitudinal compressive stress on the PFETs, by implanting in the sources and drains of the NFETs ions from the eighth column of the periodic table and hydrogen and implanting in the sources and drains of the PFETs ions from the fourth and sixth columns of the periodic table.