Abstract:
There is provided a shield plate fabrication apparatus capable of fabricating a shield plate easily. The shield plate is included in a sample milling apparatus which mills a sample by shielding a part of the sample with the shield plate and irradiating the sample with a charged particle beam. The fabrication apparatus includes: a base plate holding shaft for rotatably holding a base plate and winding tape around the base plate; and a tension mechanism for applying tension to the tape while it is being wound around the base plate.
Abstract:
A sample preparation apparatus (100) is used to prepare a cross section of a sample (S) by irradiating it with an ion beam. The apparatus (100) includes an ion beam generator (10), a shield plate (40) disposed to cover a part of the sample (S) to shield the sample (S) from the ion beam, and a controller (82) controlling the ion beam generator (10). The controller (82) controls performance of first and second operations. In the first operation, the ion beam is accelerated by a first accelerating voltage and hits the sample (S) while the sample (S) and the shield plate (40) are located in a given positional relationship. In the second operation, the ion beam is accelerated by a second accelerating voltage lower than the first accelerating voltage and hits the sample (S) while the given positional relationship is maintained.
Abstract:
A specimen machining device for machining a specimen by irradiating the specimen with an ion beam includes an ion source for irradiating the specimen with the ion beam, a shielding member disposed on the specimen to block the ion beam, a specimen stage for holding the specimen, a camera for photographing the specimen, a coaxial illumination device for irradiating the specimen with illumination light along an optical axis of the camera, and a processing unit for determining whether to terminate the machining based on an image photographed by the camera. The processing unit performs processing for acquiring information indicating a target machined width, processing for acquiring the image, processing for measuring a machined width on the acquired image, and processing for terminating the machining when the measured machined width equals or exceeds the target machined width.
Abstract:
A sample holder system includes a sample holder and a sample adjusting unit. The sample holder includes a shielding plate, a holder body, a holding portion, and a fastening mechanism. The fastening mechanism fastens the holding portion to the holder body, the fastening mechanism preventing the holding portion from swinging when the holding portion is fastened to the holder body. The sample adjusting unit includes a position adjusting jig that comes into contact with the holding portion, and a swinging mechanism that supports the position adjusting jig such that the position adjusting jig is swingable.
Abstract:
A specimen holder is used for an optical microscope, comprising: a specimen support that supports a specimen to enable the specimen to tilt relative to the optical axis of the optical microscope; an adjustment plate that has an observation surface for making observations using the optical microscope; and an adjustment plate support that supports the adjustment plate, so that the angle formed by the optical axis and the observation surface is larger than the angle formed by the optical axis and a specimen surface of the specimen.
Abstract:
A specimen holder includes a holder main body, a specimen mount to which a specimen is to be fixed, and a pressing member which slidably presses the specimen mount against the holder main body. A through-hole is provided in the specimen mount, and the specimen mount is tilted with respect to the holder main body by tilting a rod-like member which is inserted into the through-hole.
Abstract:
A specimen machining device for machining a specimen by irradiating the specimen with an ion beam includes an ion source for irradiating the specimen with the ion beam, a specimen stage for holding the specimen, a camera for photographing the specimen, an information provision unit for providing information indicating an expected machining completion time, and a storage unit for storing past machining information. The information provision unit performs processing for calculating the expected machining completion time based on the past machining information, processing for acquiring an image photographed by the camera, processing for calculating a machining speed based on the acquired image, and processing for updating the expected machining completion time based on the machining speed.
Abstract:
An ion milling apparatus includes a sample holder, a vacuum chamber, an evacuation section, a vacuum gauge, a heater, a gas inlet assembly, and a control section. The evacuation section vents gas in the interior space of the vacuum chamber. The vacuum gauge measures the pressure in the interior space of the vacuum chamber. The heater heats the sample holder. The gas inlet assembly admits a dry gas containing no moisture into the interior space of the vacuum chamber. When the pressure in the interior space has reached below a given pressure, the control section controls the gas inlet assembly based on information about the pressure in the interior space so as to admit the dry gas into the vacuum chamber.
Abstract:
A sample holder system includes a sample holder and a sample adjusting unit. The sample holder includes a shielding plate, a holder body, a holding portion, and a fastening mechanism. The fastening mechanism fastens the holding portion to the holder body, the fastening mechanism preventing the holding portion from swinging when the holding portion is fastened to the holder body. The sample adjusting unit includes a position adjusting jig that comes into contact with the holding portion, and a swinging mechanism that supports the position adjusting jig such that the position adjusting jig is swingable.
Abstract:
An ion beam processing system (100) processes the sample (S) mounted on a sample stage (30) by irradiating the sample with an ion beam in a sample chamber (2). The system has a sample container (20) including a cover portion (26) formed to be detachably mountable to a base portion (24), the sample stage (30) on which the container (20) is detachably mountable, and cover mounting/dismounting apparatus (40) for mounting and dismounting the cover portion (26) from outside the sample chamber (2).