摘要:
Embodiments of the present invention provides a system controller interfacing point-to-point subsystems consisting of solid state memory. The point-to-point linked subsystems enable high bandwidth data transfer to a system controller. The memory subsystems locally control the normal solid state disk functions. The independent subsystems thus configured and scaled according to various applications enables the memory storage system to operate with optimal data bandwidths, optimal overall power consumption, improved data integrity and increased disk capacity than previous solid state disk implementations.
摘要:
An error control system uses an error control code that corresponds to an error density location profile of a storage medium. The system includes an encoder configured to produce one or more codewords from data using an error control code generator matrix corresponding to the error density location profile of the storage medium. The system also includes a decoder configured to produce decoded data from one or more codewords using an error control code parity-check matrix corresponding to the error density location profile of the storage medium, where columns of the parity-check matrix are associated with corresponding data bits of the storage medium, rows of the parity-check matrix are associated with check bits, and each matrix element of the parity-check matrix having a predefined value indicates a connection between a particular data bit and a particular check bit.
摘要:
A method and system intelligent bit recovery is provided. The intelligent bit recovery determines which bits are toggling, and examines a subset of the potential bit patterns to determine which in the subset of potential bit patterns is valid. The subset is a fraction of the potential bit patterns, and is based on an understanding of the flash memory and the problems that may cause the toggling bits. The intelligent bit recovery may analyze at least one aspect of the flash memory to identify which problem is potentially causing the toggling bits, and to select the subset of potential bit patterns as solutions for the determined problem. Or, the intelligent bit recovery selects potential bit patterns for multiple potential problems. In either way, the subset of potential bit patterns examined by the intelligent bit recovery is a small fraction of the entire set of potential bit patterns.
摘要:
A first embodiment of a word line voltage boosting circuit for use with an array of non-volatile memory cells has a capacitor, having two ends, connected to the word line. One end of the capacitor is electrically connected to the word line. The other end of the capacitor is electrically connected to a first voltage source. The word line is also connected through a switch to a second source voltage source. A sequencing circuit activates the switch such that the word line is connected to the second voltage source, and the other end of the capacitor is not connected to the first voltage source. Then the sequencing circuit causes the switch to disconnect the word line from the second voltage source, and connect the second end of the capacitor to the first voltage source. The alternate switching of the connection boosts the voltage on the word line. In a second embodiment, a first word line is electrically connected to a first switch to a first voltage source. An adjacent word line, capacitively coupled to the first word line, is electrically connected to a second switch to a second voltage source. A sequencing circuit activates the first switch and the second switch such that the first word line is connected to the first voltage source, and the second word line is disconnected from the second voltage source. Then the sequencing circuit causes the first switch to disconnect the first word line from the first voltage source, and causes the second word line to be electrically connected to the second voltage source. The alternate switching of the connection boosts the voltage on the first word line, caused by its capacitive coupling to the second word line. A boosted voltage on the word line may be used to improve cycling and yield, where the memory cells of the array are of the floating gate type and erase through the mechanism of Fowler-Nordheim tunneling from the floating gate to a control gate which is connected to the word line.
摘要:
A nonvolatile reprogrammable switch for use in a PLD or FPGA has a nonvolatile memory cell connected to the gate of an MOS transistor with the terminals of the MOS transistor connected to the source of the signal and to the circuit. The nonvolatile memory cell is of a split gate type having a floating gate positioned over a first portion of the channel and a control gate positioned over a second portion of the channel with electrons being injected onto the floating gate by hot electron injection mechanism. The nonvolatile memory cell is erased by the action of the electrons from the floating gate being tunneled through Fowler-Nordheim tunneling onto the control gate, which is adjacent to the second region. As a result, no high voltage is ever applied to the second region during program or erase. Thus, the nonvolatile memory cell with the second region can be connected directly to the gate of the MOS transistor, which together therewith forms a nonvolatile reprogrammable switch.
摘要:
A non-volatile memory device has an array of non-volatile memory cells, a first plurality of non-volatile memory reference cells, with each reference cell capable of being programmed to a reference level different from the other reference cells; and a second plurality of comparators. Each of the comparators is connectable to one of the first plurality of non-volatile memory reference cells and to one of a third plurality of memory cells from among the array of non-volatile memory cells.
摘要:
A non-volatile memory device has an array of non-volatile memory cells, a first plurality of non-volatile memory reference cells, with each reference cell capable of being programmed to a reference level different from the other reference cells; and a second plurality of comparators. Each of the comparators is connectable to one of the first plurality of non-volatile memory reference cells and to one of a third plurality of memory cells from among the array of non-volatile memory cells.
摘要:
An error control decoding system decodes a codeword that includes a data word and two or more parity segments. The system includes a first decoder to decode the codeword by utilizing one or more first parity segments and the data word included in the codeword, and a second decoder to decode the codeword by utilizing one or more second parity segments and the data word included in the codeword, wherein the one or more first parity segments are different from the one or more second parity segments. An error estimation module estimates the number of errors in the codeword, and a controller selects which of the first decoder and second decoder to start decoding the codeword, wherein the selection is based on the estimate of the number of errors in the codeword provided by the error estimation module.
摘要:
A digital multilevel non-volatile memory includes a massive sensing system that includes a plurality of sense amplifiers disposed adjacent subarrays of memory cells. The sense amplifier includes a high speed load, a wide output range intermediate stage and a low impedance output driver. The high speed load provides high speed sensing. The wide output range provides a sensing margin at high speed on the comparison node. The low impedance output driver drives a heavy noisy load of a differential comparator. A precharge circuit coupled to the input and output of the sense amplifier increases the speed of sensing. A differential comparator has an architecture that includes analog bootstrap. A reference sense amplifier has the same architecture as the differential amplifier to reduce errors in offset. The reference differential amplifier also includes a signal multiplexing for detecting the contents of redundant cells and reference cells.
摘要:
An error control system uses an error control code that corresponds to an error density location profile of a storage medium. The system includes an encoder configured to produce one or more codewords from data using an error control code generator matrix corresponding to the error density location profile of the storage medium. The system also includes a decoder configured to produce decoded data from one or more codewords using an error control code parity-check matrix corresponding to the error density location profile of the storage medium, where columns of the parity-check matrix are associated with corresponding data bits of the storage medium, rows of the parity-check matrix are associated with check bits, and each matrix element of the parity-check matrix having a predefined value indicates a connection between a particular data bit and a particular check bit.