Abstract:
A lighting device (100) includes a housing (104), a light converter (136), one or more light sources (132), and one or more optical waveguides (160). The housing includes a light exit (124) for outputting a combination of primary light (140) and secondary light (156,158). The light source emits a primary light beam of a primary wavelength. The optical waveguide includes an input end (162) optically coupled to the light source, and an output end (164) facing a housing interior (108) and positioned at an angle to an axial direction through the housing interior. The optical waveguide directs the primary light beam from the light source, through the housing interior and toward a luminescent material of the light converter. The luminescent material emits secondary light of one or more wavelengths different from the primary wavelength in response to excitation by the primary light beam. The light source may be mounted outside the housing interior so as not to obstruct light propagation.
Abstract:
The present invention includes methods and compositions relating to the setting of fluids or slurries in a wellbore. In one embodiment, a method of isolating a portion a wellbore includes preparing a sealant composition having a fluid component, a polymeric additive constituent, and a set modifier component. The sealant composition is placed into a wellbore and subjected to ionizing radiation. The ionizing radiation can cause bonding between polymeric additive constituents and create a polymer matrix within the sealant composition that increases the mechanical strength of the sealant composition. The ionizing radiation also alters the set modifier component, triggering the thickening of the sealant composition.
Abstract:
The present invention includes methods relating to the setting of fluids or slurries in a wellbore. In one embodiment, a method of isolating a portion a wellbore by preparing a sealant composition comprising a fluid component and a polymeric additive component, placing the sealant composition into a wellbore and subjecting the sealant composition to ionizing radiation. The ionizing radiation can cause bonding between polymeric additive components and create a polymer matrix within the sealant composition that increases the mechanical strength of the sealant composition.
Abstract:
An optical device having a mat including plural nanofibers configured to transmit light having wavelengths above a cutoff wavelength and to reject light at wavelengths below the cutoff wavelength. The nanofibers have an average fiber diameter comparable in size to the cutoff wavelength.
Abstract:
A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength λ. The average fiber diameter is comparable in size to the wavelength λ in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
Abstract:
A lighting device (100) includes a housing (104) enclosing a housing interior (108), a light source (132), a light converter (136), and a color tuning device. The light source is configured for emitting a primary light beam of a primary wavelength (140) through the housing interior. The light converter includes a luminescent material (144) facing the housing interior and configured for emitting secondary light (156, 158) of one or more wavelengths different from the primary wavelength, in response to excitation by the primary light beam. The housing includes a light exit (124) for outputting a combination of primary light and secondary light. The color tuning device is configured for adjusting a position of the primary light beam relative to the luminescent material.
Abstract:
Methods of isolating a portion of a wellbore comprising placing a sealant composition into a subterranean formation after drilling of the wellbore therein and subjecting the sealant composition to ionizing radiation wherein subjecting the sealant composition to the ionizing radiation alters the set modifier. The sealant composition comprises a set modifier selected from the group consisting of an accelerator, an oxidizing agent, a set retarder, and combinations thereof. And the sealant composition comprises a polymeric component.
Abstract:
A fiber-based reflective lighting device and a lighting device. The fiber-based reflective lighting device includes a source configured to generate a primary light, a mat of reflective fibers which diffusely reflects light upon illumination with at least the primary light, and a light exit configured to emanate the reflected light. The lighting device includes a housing, a source configured to generate primary light and direct the primary light into the housing, a reflective mat of fibers disposed inside the housing at a position to reflect the primary light, and a light exit in the housing configured to emanate the reflected light from the housing.
Abstract:
The present invention includes compositions relating to the setting of fluids or slurries in a wellbore. In one embodiment, a sealant composition having a fluid component and a polymeric additive component can be subjected to ionizing radiation. The ionizing radiation can cause bonding between polymeric additive components and create a polymer matrix within the sealant composition that increases the mechanical strength of the sealant composition.
Abstract:
A voltage variable capacitor (VVC) is made by placing an intercalation compound between two electrodes of a capacitor. The VVC has a reservoir of an intercalant in proximity with the intercalation compound. The two materials are chosen from those known to exhibit the intercalation reaction. The extent of the intercalation reaction is controlled by applying a voltage to the intercalant reservoir and the intercalation compound. A variable capacitor is created by applying a signal to the device and appropriately controlling the .epsilon. of the device by using the input control voltages.