摘要:
A multiple precipitation doping process for doping a semiconductor substrate (30) starts with forming an amorphous region (32) in the substrate (30). Through multiple laser exposures, multiple dopant precipitation films (52, 53) are formed on corresponding portions (34, 37) of the major surface (31) of the substrate (30) overlying the amorphous region (32). The substrate (30) is then annealed. The annealing process melts the amorphous region (32) and allows the dopants precipitated on the major surface (31) to diffuse into the substrate (30). The annealing process also crystallizes the semiconductor material the amorphous region (32). The substrate (30) becomes a single crystal semiconductor substrate with multiple doped regions (54, 57) therein. The depth of the doped regions (54, 57) is substantially equal to the depth of the amorphous region (32) before annealing.
摘要:
Semiconductor structures with damascene metal gates and pixel sensor cell shields, methods of manufacture and design structures are provided. The method includes forming a dielectric layer over a dummy gate structure. The method further includes forming one or more recesses in the dielectric layer. The method further includes removing the dummy gate structure in the dielectric layer to form a trench. The method further includes forming metal in the trench and the one more recesses in the dielectric layer to form a damascene metal gate structure in the trench and one or more metal components in the one or more recesses.
摘要:
Pixel sensor cells, methods of fabricating pixel sensor cells, and design structures for a pixel sensor cell. A transistor in the pixel sensor cell has a gate structure that includes a gate dielectric with a thick region and a thin region. A gate electrode of the gate structure is formed on the thick region of the gate dielectric and the thin region of the gate dielectric. The thick region of the gate dielectric and the thin region of the gate dielectric provide the transistor with an asymmetric threshold voltage.
摘要:
A method for forming a conductive structure of sub-lithographic dimension suitable for FEOL and BEOL semiconductor fabrication applications. The method includes forming a topographic feature of silicon-containing material on a substrate; forming a dielectric cap on the topographic feature; applying a mask structure to expose a pattern on a sidewall of the topographic feature, the exposed pattern corresponding to a conductive structure to be formed; depositing a metal at the exposed portions of the sidewall and forming one or more metal silicide conductive structures at the exposed sidewall portions; removing the dielectric cap layer; and removing the silicon-containing topographic feature. The result is the formation of one or more metal silicide conductor structures formed for a single lithographically defined feature. In example embodiments, the formed metal silicide conductive structures have a high aspect ratio, e.g., ranging from 1:1 to 20:1 (height to width dimension).
摘要:
Disclosed herein are embodiments of a design structure of a multiple fin fin-type field effect transistor (i.e., a multiple fin dual-gate or tri-gate field effect transistor) in which the multiple fins are partially or completely merged by a highly conductive material (e.g., a metal silicide). Merging the fins in this manner allow series resistance to be minimized with little, if any, increase in the parasitic capacitance between the gate and source/drain regions. Merging the semiconductor fins in this manner also allows each of the source/drain regions to be contacted by a single contact via as well as more flexible placement of that contact via.
摘要:
A CMOS image sensor comprising an array of active pixel cells. Each active pixel cell includes a substrate; a photosensing device formed at or below a substrate surface for collecting charge carriers in response to incident light; and, one or more light transmissive conductive wire structures formed above the photosensing device, the one or more conductive wire structures being located in an optical path above the photosensing device. The formed light transmissive conductive wire structures provide both an electrical and optical functions. An optical function is provided by tailoring the thickness of the conductive wire layer to filter light according to a pixel color scheme. Alternately, the light transmissive conductive wire structures may be formed as a microlens structure providing a light focusing function. Electrical functions for the conductive wire layer include use as a capacitor plate, as a resistor or as an interconnect.
摘要:
A method for forming a conductive structure of sub-lithographic dimension suitable for FEOL and BEOL semiconductor fabrication applications. The method includes forming a topographic feature of silicon-containing material on a substrate; forming a dielectric cap on the topographic feature; applying a mask structure to expose a pattern on a sidewall of the topographic feature, the exposed pattern corresponding to a conductive structure to be formed; depositing a metal at the exposed portions of the sidewall and forming one or more metal silicide conductive structures at the exposed sidewall portions; removing the dielectric cap layer; and removing the silicon-containing topographic feature. The result is the formation of one or more metal silicide conductor structures formed for a single lithographically defined feature. In example embodiments, the formed metal silicide conductive structures have a high aspect ratio, e.g., ranging from 1:1 to 20:1 (height to width dimension).
摘要:
A device design for an FET in SOI CMOS which is designed for enhanced avalanche multiplication of current through the device when the FET is on, and to remove the body charge when the FET is off. The FET has an electrically floating body and is substantially electrically isolated from the substrate. The present invention provides a high resistance path coupling the floating body of the FET to the source of the FET, such that the resistor enables the device to act as a floating body for active switching purposes and as a grounded body in a standby mode to reduce leakage current. The high resistance path has a resistance of at least 1 M-ohm, and comprises a polysilicon resistor which is fabricated by using a split polysilicon process in which a buried contact mask opens a hole in a first polysilicon layer to allow a second polysilicon layer to contact the substrate.
摘要:
A design structure embodied in a machine readable medium for use in a design process, the design structure representing a CMOS image sensor device comprising an array of active pixel cells. Each active pixel cell includes a substrate; a photosensing device formed at or below a substrate surface for collecting charge carriers in response to incident light; and, one or more light transmissive conductive wire structures formed above the photosensing device, the one or more conductive wire structures being located in an optical path above the photosensing device. The formed light transmissive conductive wire structures provide both an electrical and optical functions. An optical function is provided by tailoring the thickness of the conductive wire layer to filter light according to a pixel color scheme. Alternately, the light transmissive conductive wire structures may be formed as a microlens structure providing a light focusing function. Electrical functions for the conductive wire layer include use as a capacitor plate, as a resistor or as an interconnect.
摘要:
A method of fabricating a CMOS image sensor comprising an array of active pixel cells. Each active pixel cell includes a substrate; a photosensing device formed at or below a substrate surface for collecting charge carriers in response to incident light; and, one or more light transmissive conductive wire structures formed above the photosensing device, the one or more conductive wire structures being located in an optical path above the photosensing device. The formed light transmissive conductive wire structures provide both an electrical and optical function. An optical function is provided by tailoring the thickness of the conductive wire layer to filter light according to a pixel color scheme. Alternately, the light transmissive conductive wire structures may be formed as a microlens structure providing a light focusing function. Electrical functions for the conductive wire layer include use as a capacitor plate, as a resistor or as an interconnect.