摘要:
The invention provides a low-friction sliding mechanism, a low-friction agent composition, a friction reduction method, a manual transmission and a final reduction gear unit that can exert very excellent low friction characteristics to sliding surfaces present under various applications, and, in particular, that have more excellent low friction characteristics than that of a combination of an existing steel material and an organic Mo compound. The low-friction sliding mechanism has an oxygen-containing organic compound or an aliphatic amine compound interposed between sliding surfaces that a DLC coated sliding member and a sliding member form. The low-friction agent composition contains an oxygen-containing organic compound or an aliphatic amine compound. The friction reduction method includes supplying the low-friction agent composition between sliding surfaces that a DLC coated sliding member and a sliding member form. The manual transmission includes, as at least one of sliding members, a DLC coated sliding section. The final reduction gear unit includes, as at least one of sliding members, a DLC coated sliding section.
摘要:
The invention provides a low-friction sliding mechanism, a low-friction agent composition, a friction reduction method, a manual transmission and a final reduction gear unit that can exert very excellent low friction characteristics to sliding surfaces present under various applications, and, in particular, that have more excellent low friction characteristics than that of a combination of an existing steel material and an organic Mo compound.The low-friction sliding mechanism has an oxygen-containing organic compound or an aliphatic amine compound interposed between sliding surfaces that a DLC coated sliding member and a sliding member form.The low-friction agent composition contains an oxygen-containing organic compound or an aliphatic amine compound.The friction reduction method includes supplying the low-friction agent composition between sliding surfaces that a DLC coated sliding member and a sliding member form.The manual transmission includes, as at least one of sliding members, a DLC coated sliding section.The final reduction gear unit includes, as at least one of sliding members, a DLC coated sliding section.
摘要:
A low-friction sliding member in a transmission is at least one of sliding members which are in slidable contact with each other in presence of a transmission oil composition. The low-friction sliding member includes a base material having a sliding section. A hard carbon thin film is coated at a sliding surface of the sliding section of the base material. The hard carbon thin film contains hydrogen in an amount not more than 20 atomic %. The transmission oil composition contains at least one of organic oxygen-containing compound and aliphatic amine compound.
摘要:
A low-friction sliding member in a transmission is at least one of sliding members which are in slidable contact with each other in presence of a transmission oil composition. The low-friction sliding member includes a base material having a sliding section. A hard carbon thin film is coated at a sliding surface of the sliding section of the base material. The hard carbon thin film contains hydrogen in an amount not more than 20 atomic %. The transmission oil composition contains at least one of organic oxygen-containing compound and aliphatic amine compound.
摘要:
A low-friction sliding member in a transmission is at least one of sliding members which are in slidable contact with each other in presence of a transmission oil composition. The low-friction sliding member includes a base material having a sliding section. A hard carbon thin film is coated at a sliding surface of the sliding section of the base material. The hard carbon thin film contains hydrogen in an amount not more than 20 atomic %. The transmission oil composition contains at least one of organic oxygen-containing compound and aliphatic amine compound.
摘要:
A brazing material includes silver and copper as main components; at least one element A selected from indium, zinc, and tin; at least one element B selected from titanium, zirconium, hafnium, and niobium; and at least one element C selected from molybdenum, osmium, rhenium, and tungsten. The content of copper is not less than 35% by mass and not more than 50% by mass, based on the total amount of silver, copper, and the elements A, B and C. A heat dissipation base includes a supporting substrate, circuit members on a first main surface of the substrate, and a heat dissipation member on a second main surface opposite to the first main surface. The circuit members are joined to the supporting substrate by a joining layer composed of the brazing material.
摘要:
Provided are a brazing material capable of being restrained from protruding unnecessarily in a joint region; a heat dissipation base having a high reliability of electric insulation, and does not easily cause a short circuit even when the base dissipates heat repeatedly; and an electronic device wherein an electronic component is mounted on circuit members of this heat dissipation base. The brazing material comprises silver and copper as main components; at least one element A selected from indium, zinc, and tin; at least one element B selected from titanium, zirconium, hafnium, and niobium; and at least one element C selected from molybdenum, osmium, rhenium, and tungsten. In a heat dissipation base 10 in which circuit members 41 and a heat dissipation member 42 are joined to a supporting substrate 21 through joining layers 31, 32 comprising the above brazing material, the brazing material scarcely protrudes unnecessarily from the joint regions thereof to make it possible to reduce a risk that a short circuit is caused between the circuit members 41, which are adjacent to each other.
摘要:
[Object] To provide a clutch apparatus that can smoothly switch from a clutch engaged state to a clutch non-engaged state, while tooth jump does not occur even with a small-sized clutch apparatus.[Solving Means] A recessed portion 153 is provided in a cam face of a cam 45. A cam shaft 13 is configured to pivot by a predetermined amount as a cam follower 51 is fitted in the recessed portion, and, when the cam initiates to engage the cam follower, it enters a clutch engaged state. A driven side gear 99 is pivoted by a predetermined amount as the cam follower is fitted in the recessed portion and, thereby, a clutch member 93 is rotated by a predetermined amount in a direction in which a toothed portion 94 is spaced apart from a drive side gear 92. In a state where the cam follower is not fitted in the recessed portion, when the clutch member 93 switches its clutch state, at least a portion of a swing locus of the toothed portion 94 of the clutch member 93 maintains a clearance with a gear tooth of the drive side gear 92.
摘要:
A shock sensor capable of detecting a shock in a number of directions includes a reed switch, which is fixed inside a body and has a reed contact part with is magnetically changed from a first to a second state by way of a magnet, which is fixed inside the body at a specified distance from the reed switch. A shield member, having a sufficiently large area, prevents the magnetic force of the magnet from affecting the reed contact part when the shield member is in its regular position. A resilient member, in a normal state, keeps the shield member at its regular position between the reed contact part and the magnet, at which the reed contact part is kept in the first state. When a shock is applied to the shock sensor, the resilient member allows the shield member to move to a position where the reed contact part changes over to the second state.In a second embodiment, the magnet is movably held in the main casing at a specified distance from the reed switch. In a normal state, the position of the magnet is such that its magnetism does not affect the reed contact part. When a shock is applied to the shock sensor, the magnet moves to a second position where the reed contact part is changed over to the second state.
摘要:
A shock sensor includes a casing defining a cylindrical space therein. The sensor also includes a protecting tube placed the cylindrical space so as to define an annular space between the casing and the protecting tube, the protecting tube having an inner space therein. A partitioning member is provided in the inner space so as to extend parallel to the longitudinal axis of the protecting tube and to divide the inner space into a plurality of compartments extending substantially parallel to the protecting tube. The sensor also includes a plurality of reed switches positioned one in each of the compartments, and insulating members placed in remaining spaces in the compartments. A magnetic actuating device for actuating the reed switches when a shock of predetermined magnitude acts on the sensor is slidably disposed on the protecting tube.