摘要:
A service message system for a switching architecture including at least one Switch Fabric (10, 20) comprising a switch core (15, 25) located in a centralized building and a set of Switch Core Access Layer (SCAL) elements distributed in different physical areas for the attachment to the different Port adapters (30, 31). Each SCAL elements particularly includes a SCAL receive element (11-i) and a SCAL Xmit element (12-i) for the respective access to one input port and one output port via serial links. The service message is based on the use of a Cell qualifier field at the beginning of each cell, which comprises a first and a second field. The first field is the Filtering Control field which permits an easy decoding of a service message cell, when applicable. The second field is used for determining which particular type of service message is conveyed via the cell. Following the Cell qualifier is the Switch Routing Header (SRH) which permits the characterization of the destination of the cell and is used for controlling the routing process. Preferably, the service message is used in a fault tolerance configuration where two different Switch Fabrics act as a standby to each other and shares a part of the traffic. Each one is configured as a default routing path for some ports adapters and a backup path for the others. In that particular configuration, the service message system of the invention uses the first field of the Cell qualifier to transport a Direct filtering command causing the Switch fabric to route the cell when the SRH is representative of its default output port destination. Conversely, the first field may transport a Reverse filtering command in the first field that causes the Switch fabric to reverse the default routing process. The first field is also used for characterizing a service message cell which the second field indicates the accurate type. Particularly, two types are used for the production of the filling cells when no data cell is to be transmitted at a particular location of the switching architecture.
摘要:
A switching system having at least two switch fabrics. Each fabric has a switch core and a set of SCAL (Switch Core Access Layer) receive and transmit elements. The switch cores are preferably located in the same physical area but the SCALs may be distributed in different physical areas. Port Adapters distributed at different physical areas are connected to the switch fabrics via a particular SCAL element so that each switch core can receive cells from any port adapter and conversely any port adapter may receive data from either switch core. Control logic assigns a particular switch core to one port adapter for normal operations while reserving the other switch core for use when the first core is out of service. Each switch core has a mask mechanism which uses the value in a mask register to alter a bitmap value which controls the routing process. The mask registers in the two switch cores are loaded with complementary values.
摘要:
A fault tolerant switching architecture is provided with two separate switch fabrics each having a switch cure located in a centralized building and a set of SCAL elements distributed in different physical areas. Each SCAL element has both a SCAL receive element and a SCAL transmit element for access to a corresponding input and output port of the swatch core. A set of port adapters is distributed at different physical areas, with each connected switch fabrics via a particular SCAL element so that each switch core receives the sequence of cells coming from any port adapter and conversely any port adapter may receive cells from either one of the switch cores. Each switch fabric can detect an internal breakdown condition occurring in one of its element and send an error control signal to the peer element located in the other switch fabric. Each switch core extracts the Switch Routing Header (SRH) from the cells entering the switch core, and a routing table for obtaining a bit map value that indicates the output ports to which the cell should be routed. An additional controllable masking mechanism is used for altering the value of the bit map in response to the detection of the error control signal from the peer switch core. The routing process is then performed with the altered value of the bitmap.
摘要:
A switching system comprising a switching structure for routing cells from a set of M input ports towards a set of M output ports. The system includes a set of distributed individual Switch Core Access layer elements which communicate with one input and output port of the switching structure by means of a set of serial communication links. Each SCAL element provides attachment to at least one Protocol Adapter and comprises a set of circuits. The receive part of each circuit, which includes at least one first FIFO storage for storing the cells being received, receives the data cells from the attached Protocol Adapter and introduces at least one extra byte to every cell. Each transmit part of the destination circuit, which includes at least one second FIFO storage having a greater capacity than the first FIFO storage, receives all the cells that are generated at the corresponding output port and uses the at least one extra byte for cell buffering. Additionally, each distrubuted SCAL element comprises control means for performing Time Division Multiplexing access of the FIFOs.
摘要:
The system and method encodes a binary sequence of data bits into a sequence of ternary symbols and transmits the sequence of ternary symbols over a communication link. The encoding is performed so that no two consecutive symbols of the sequence are alike. The system and method assume that, for encoding, the previously encoded non-null symbol and the previously encoded symbol must be stored in a memory system. The sequence of symbols is transmitted in lieu of the binary sequence of data bits and decoded by a receiving device in order to restore the binary sequence of data bits from the received sequence of symbols. The decoding procedure assumes that three symbols must be received before a bit can be recovered. Hence, the system and method allow a self-delineation or self-sampling of a very-high speed data communication interface that is insensitive to large timing variations and skews.
摘要:
A Decimation filter for converting a train of sigma-delta pulses S(i) in synchronism with a sigma-delta clock (fs) into a train of Pulse Coded Modulation (PCM) samples in accordance with the formula ##EQU1## where Cn is the sequence of the coefficients of the decimation filter which corresponds to a determined decimation factor, and the PCM samples being processed by a Digital Signal Processor (DSP). The decimation filter includes a device for storing a digital value representative of the DC component introduced during the sigma-delta coding process, with the digital value being computing by the DSP processor during an initialization phase. The decimation filter further includes a device operating after the latter initialization phase for subtracting the stored digital value from each of the PCM samples so that the resulting sequence of PCM samples appears free of any DC component introduced during the sigma-delta coding. This accurate DC component suppression is achieved without necessitating the use of additional digital signal processor resources from the processor. Preferably, the decimation filter comprises a device for detecting a saturation occurring in the computing of the PCM sample, and responsive to the saturation detection, for transmitting a predetermined PCM sample to the DSP processor.
摘要:
A decimation filter for converting a received train of sigma-delta pulses in synchronism with a sigma-delta clock (fs) into a train of Pulse Code Modulation (PCM) samples having a PCM clock in accordance with the formula ##EQU1## includes a computer for computing one PCM sample from a sequence of sigma-delta samples in synchronism with the PCM clock and also a comparison circuit for determining whether phase correction of the PCM clock is necessary to lock the generation of the PCM samples on the sigma-delta clock extracted from the received sigma-delta signal, the decimation filter including shifters which shift the computation process at least one sigma-delta clock pulse in order to provide phase control in the generation of the PCM samples.
摘要:
Data Circuit Terminating Equipment (DCE) allows the connection of a Data Terminal Equipment (DTE) to a telecommunication line. The DCE includes timing elements for providing the DTE with any desired transmitter signal element timing and any desired receiver signal element timing. The timing elements include processing elements for computing a sequence of digital values A(n) and for deriving therefrom a corresponding sequence of interrupt signals T(n). The receiver signal element timing, the transmitter signal element timing, the transmit sampling clock pulsing the D/A converter and the receive sampling clock pulsing the A/D converter are all controlled by different sequences of digital values computed by the processing elements. By generating appropriate sequences of digital values, the processing elements can provide any desired relationship between the different clocks to satisfy a transmit signal element timing slaved to the receiver signal element timing in synchronous mode, or on an external clock in tailing mode. The timing elements can also provide a transmit sampling clock slaved to the receive sampling clock in order to perform powerful digital echo cancellation techniques. Moreover, the processing elements can control the persistence of a received bit, which if a STOP bit, can allow the compensation of the DTE and the line data throughput difference.
摘要:
A decimation filter for converting a train of sigma-delta pulses S(i) in synchronism with a sigma-delta clock (fs) into a train of PCM samples which includes counters (321, 331, 341) driven by the sigma-delta clock (fs) and which is continuously incremented by one during N sigma-delta clock pulses, then decremented by two during N following sigma-delta clock pulses and then incremented again by one during N following sigma-delta clock pulses in order to provide a sequence of incrementation parameter DELTA(n). The decimation filter further includes storages (320, 330, 340) for storing the value of the coefficient C(n) corresponding to the decimation filter transfer function, and incrementers (327, 337, 347) driven by the sigma-delta clock fs for incrementing the storages with the incrementation parameter DELTA(n). Finally, the decimation filter includes computers (323, 333, 343, 327, 337, 347) for deriving from the contents C(n) of said storages and from the train of input sigma-delta samples S(i+n) one Pulse Code Modulation (PCM) sample every 3.times.N input sigma-delta samples according to the formula: ##EQU1##
摘要:
A predictive clock extracting circuit having a first circuit for determining the duration between two consecutive transitions of a multilevel digital signal and a second circuit for generating an SPL pulse at half the duration after a third transition following on two consecutive previous transitions. A phase locked oscillator which is driven by said SPL pulse generates the extracted clock signal which is in phase with the SPL pulse and coincides with the center of the eye intervals of said multilevel digital signal. The system includes a first counter N which starts running in response to the detection of the first transition of the multilevel digital signal. The running stops when the second transition occurs. The result N(i) stored into the first counter N at second transition is therefore representative of the duration between the two consecutive first and second transitions. The preferred embodiment of the invention also involves an up/down counter K which generates a second counter K(i) that is expected to be representative of half the value of the first counter N(i). Counter K is adaptively updated by incrementing its current value K(i) by a fixed factor or, on the contrary, by decrementing its current value K(i) by a fixed damping factor.