AMORPHOUS SILICON SOLAR CELLS
    1.
    发明申请
    AMORPHOUS SILICON SOLAR CELLS 审中-公开
    非晶硅太阳能电池

    公开(公告)号:US20110226330A1

    公开(公告)日:2011-09-22

    申请号:US13058992

    申请日:2009-08-11

    摘要: The present invention provides novel strategies for mitigating the Staebler-Wronski Effect (SWE), that is, the light induced degradation in performance of photoconductivity in amorphous silicon. Materials according to the present invention include alloys or composites of amorphous silicon which affect the elasticity of the materials, amorphous silicon that has been grown on a flexed substrate, compression sandwiched comprising amorphous silicon, and amorphous silicon containing nanoscale features that allow stress to be relieved. The composites are formed with nanoparticles such as nanocrystals and nanotubes. Preferred are boron nitride nanotubes (BNNT) including those that have been surface modified.

    摘要翻译: 本发明提供了用于减轻Staebler-Wronski效应(SWE)的新颖策略,即在非晶硅中光诱导的光电导性能降低。 根据本发明的材料包括影响材料的弹性的非晶硅的合金或复合材料,已经在柔性基底上生长的非晶硅,包含非晶硅的压缩和含有允许应力释放的纳米尺度特征的非晶硅 。 复合材料由纳米晶体和纳米管等纳米颗粒形成。 优选的是包括已被表面改性的那些的氮化硼纳米管(BNNT)。

    Nanomechanical resonance detector
    2.
    发明授权
    Nanomechanical resonance detector 有权
    纳米机械共振检测器

    公开(公告)号:US08567249B2

    公开(公告)日:2013-10-29

    申请号:US12543359

    申请日:2009-08-18

    IPC分类号: G01H13/00

    CPC分类号: G01H13/00

    摘要: An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

    摘要翻译: 纳米机械频率检测器的实施例包括支撑结构和耦合到支撑结构的多个细长纳米结构。 每个细长的纳米结构具有特定的谐振频率。 多个细长纳米结构具有一定范围的谐振频率。 识别物体的方法的实施例包括将物体引入纳米机械共振检测器。 通过纳米机械共振检测器的至少一个细长纳米结构的共振响应表示物体的振动模式。 识别本发明的分子种类的方法的实施方案包括将分子种类引入纳米机械共振检测器。 通过纳米机械共振检测器的至少一个细长纳米结构的共振响应指示分子种类的振动模式。

    Tunable multiwalled nanotube resonator
    3.
    发明授权
    Tunable multiwalled nanotube resonator 有权
    可调谐多壁纳米管谐振器

    公开(公告)号:US08573031B2

    公开(公告)日:2013-11-05

    申请号:US13026122

    申请日:2011-02-11

    IPC分类号: G01H13/00 G01N29/02

    摘要: A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

    摘要翻译: 可调谐的纳米级谐振器在精确的质量,力,位置和频率测量中具有潜在的应用。 该装置的一个实施例由悬挂在金属电极和可移动​​的压电控制触点之间的专门制备的多壁碳纳米管(MWNT)组成。 通过利用MWNT的独特的伸缩能力,可以可靠地从其外部纳米管壳体滑动内部纳米管芯,有效地改变其长度,从而改变其谐振频率的调谐。 谐振能量转移可以与纳米谐振器一起使用,以检测特定目标振荡频率的分子,而不使用化学标记,以提供无标记的化学物质检测。

    Photonic Crystal Solar Cell
    4.
    发明申请
    Photonic Crystal Solar Cell 审中-公开
    光子晶体太阳能电池

    公开(公告)号:US20110247676A1

    公开(公告)日:2011-10-13

    申请号:US13121667

    申请日:2009-09-28

    摘要: The present invention provides a photovoltaic cell, which is contained within a photonic crystal structure. The photonic crystal is at least two-dimensional, and contains defects to guide incident light, e.g., sunlight, into a crystal cavity, where the concentrated light is guided into a cavity, preferably a photonic optical cavity, which is also a photovoltaic region comprising a semiconductor heterojunction for forming a photovoltaic current.

    摘要翻译: 本发明提供一种包含在光子晶体结构内的光伏电池。 光子晶体至少是二维的,并且包含将入射光(例如太阳光)引导到晶体腔中的缺陷,其中集中的光被引导到空腔中,优选光子空腔,其也是包括 用于形成光电流的半导体异质结。

    Controlled Alignment in Polymeric Solar Cells
    5.
    发明申请
    Controlled Alignment in Polymeric Solar Cells 审中-公开
    聚合太阳能电池中的受控比对

    公开(公告)号:US20110253217A1

    公开(公告)日:2011-10-20

    申请号:US13121932

    申请日:2009-09-28

    摘要: Disclosed are methods of using magnetic or electric fields to align magnetically responsive nanoparticles in a polymeric matrix, which has not yet been completely solidified. The nanoparticles are preferably magnetically doped, then blended with photovoltaic polymer material to form devices. The methods provided are particularly useful for the formation of solar cell devices. The devices include nanostructured electron-conducting channels arranged approximately parallel to one another, where the channels comprise magnetically doped materials, as well as photovoltaic materials interspersed with the nanostructured electron-conducting channels. The method provides a way to control the morphology of blended photovoltaic devices, which will improve efficiencies. In addition, the new method provides a way to control the growth of novel, cheap, solar cells, which can in turn lead to enhanced performance.

    摘要翻译: 公开了使用磁场或电场将磁响应纳米颗粒对准在尚未完全固化的聚合物基质中的方法。 纳米颗粒优选是磁性掺杂的,然后与光伏聚合物材料共混以形成器件。 所提供的方法对于太阳能电池器件的形成特别有用。 这些器件包括大致彼此平行布置的纳米结构的电子传导通道,其中沟道包括磁性掺杂材料,以及散布有纳米结构的电子传导通道的光伏材料。 该方法提供了一种控制混合光伏器件形态的方法,从而提高效率。 此外,新方法提供了一种控制新颖,便宜的太阳能电池的增长的方式,从而可以提高性能。

    Nanomechanical Resonance Detector
    6.
    发明申请
    Nanomechanical Resonance Detector 有权
    纳米机械共振检测器

    公开(公告)号:US20100050772A1

    公开(公告)日:2010-03-04

    申请号:US12543359

    申请日:2009-08-18

    IPC分类号: G01H13/00

    CPC分类号: G01H13/00

    摘要: An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

    摘要翻译: 纳米机械频率检测器的实施例包括支撑结构和耦合到支撑结构的多个细长纳米结构。 每个细长的纳米结构具有特定的谐振频率。 多个细长纳米结构具有一定范围的谐振频率。 识别物体的方法的实施例包括将物体引入纳米机械共振检测器。 通过纳米机械共振检测器的至少一个细长纳米结构的共振响应表示物体的振动模式。 识别本发明的分子种类的方法的实施方案包括将分子种类引入纳米机械共振检测器。 通过纳米机械共振检测器的至少一个细长纳米结构的共振响应指示分子种类的振动模式。

    Nanoscale Solar Cell Configuration
    7.
    发明申请
    Nanoscale Solar Cell Configuration 审中-公开
    纳米级太阳能电池配置

    公开(公告)号:US20110253205A1

    公开(公告)日:2011-10-20

    申请号:US13121174

    申请日:2009-09-25

    摘要: The present disclosure is directed to an optimized structure for an exciton-based photovoltaic cell, in which the bulk heterojunction between the electron donor (typically an organic polymeric semiconductor) and an electron acceptor (e.g., silicon or titanium or titania) minimizes the necessary exciton travel distance to the heterojunction in three dimensions. The configuration is arrayed in three dimensions, such that one member of the heterojunction pair, such as the electron acceptor is in the form of a number of nanoscale channels, extending to an electrode. The channels extend through a photovoltaic matrix material in a predetermined three-dimensional configuration.

    摘要翻译: 本公开针对基于激子的光伏电池的优化结构,其中电子给体(通常为有机聚合物半导体)和电子受体(例如硅或钛或二氧化钛)之间的体异质结使得必需的激子最小化 三维异步连接的行程距离。 该配置在三维中排列,使得异质结对的一个元件(例如电子受体)呈多个纳米尺度通道的形式延伸到电极。 通道以预定的三维配置延伸穿过光伏基体材料。

    Tunable Multiwalled Nanotube Resonator
    8.
    发明申请
    Tunable Multiwalled Nanotube Resonator 有权
    可调谐多壁纳米管谐振器

    公开(公告)号:US20110179883A1

    公开(公告)日:2011-07-28

    申请号:US13026122

    申请日:2011-02-11

    IPC分类号: G01L5/00

    摘要: A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

    摘要翻译: 可调谐的纳米级谐振器在精确的质量,力,位置和频率测量中具有潜在的应用。 该装置的一个实施例由悬挂在金属电极和可移动​​的压电控制触点之间的专门制备的多壁碳纳米管(MWNT)组成。 通过利用MWNT的独特的伸缩能力,可以可靠地从其外部纳米管壳体滑动内部纳米管芯,有效地改变其长度,从而改变其谐振频率的调谐。 谐振能量转移可以与纳米谐振器一起使用,以检测特定目标振荡频率的分子,而不使用化学标记,以提供无标记的化学物质检测。

    ELECTRONICALLY CONTROLLED SQUISHABLE COMPOSITE SWITCH
    10.
    发明申请
    ELECTRONICALLY CONTROLLED SQUISHABLE COMPOSITE SWITCH 有权
    电子控制可混合复合开关

    公开(公告)号:US20120112152A1

    公开(公告)日:2012-05-10

    申请号:US13291016

    申请日:2011-11-07

    IPC分类号: H01L45/00 H01L21/62 B82Y99/00

    摘要: A method and apparatus for making analog and digital electronics which includes a composite including a squishable material doped with conductive particles. A microelectromechanical systems (MEMS) device has a channel made from the composite, where the channel forms a primary conduction path for the device. Upon applied voltage, capacitive actuators squeeze the composite, causing it to become conductive. The squishable device includes a control electrode, and a composite electrically and mechanically connected to two terminal electrodes. By applying a voltage to the control electrode relative to a first terminal electrode, an electric field is developed between the control electrode and the first terminal electrode. This electric field results in an attractive force between the control electrode and the first terminal electrode, which compresses the composite and enables electric control of the electron conduction from the first terminal electrode through the channel to the second terminal electrode.

    摘要翻译: 一种用于制造模拟和数字电子学的方法和装置,其包括掺杂有导电颗粒的可堆置材料的复合材料。 微机电系统(MEMS)装置具有由复合材料制成的通道,其中通道形成器件的主导通路径。 在施加电压时,电容执行器挤压复合材料,使其变得导电。 可挤压装置包括控制电极,以及电气和机械连接到两个端子电极的复合体。 通过相对于第一端子电极向控制电极施加电压,在控制电极和第一端子电极之间产生电场。 该电场导致控制电极和第一端子电极之间的吸引力,其压缩复合材料,并且能够电控制从第一端子电极通过通道到第二端子电极的电子传导。