摘要:
The present invention provides for controlling the power consumption of an element. A first power control command is issued by software for the element. It is determined if the power control command corresponds to an allowable power control state for that element as defined by the hardware. If the power control command is not an allowable power control state for that element, the hardware sets the power control at a higher level than the power control state issued by the software. The software is real time software, and the software also sets minimally acceptable activity control states. A hierarchy of power consumption is defined for different elements of a chip by software, which provides the minimum level of power consumption by any element or sub-element on a chip.
摘要:
A component of a microprocessor-based data processing system, which includes features for regulating power consumption in snoopable components and has gating off memory coherency properties, is determined to be in a relatively inactive state and is transitioned to a non-snoopable low power mode. Then, when a snoop request occurs, a retry protocol is sent in response to the snoop request. In conjunction with the retry protocol, a signal is sent to bring the component into snoopable mode. When the retry snoop is requested, the component is in full power mode and can properly respond to the snoop request. After the snoop request has been satisfied, the component again enters into a low power mode. Therefore, the component is able to enter into a low power mode in between snoops
摘要:
A component of a microprocessor-based data processing system, which includes features for regulating power consumption in snoopable components and has gating off memory coherency properties, is determined to be in a relatively inactive state and is transitioned to a non-snoopable low power mode. Then, when a snoop request occurs, a retry protocol is sent in response to the snoop request. In conjunction with the retry protocol, a signal is sent to bring the component into snoopable mode. When the retry snoop is requested, the component is in full power mode and can properly respond to the snoop request. After the snoop request has been satisfied, the component again enters into a low power mode. Therefore, the component is able to enter into a low power mode in between snoops
摘要:
A component of a microprocessor-based data processing system, which includes features for regulating power consumption in snoopable components and has gating off memory coherency properties, is determined to be in a relatively inactive state and is transitioned to a non-snoopable low power mode. Then, when a snoop request occurs, a retry protocol is sent in response to the snoop request. In conjunction with the retry protocol, a signal is sent to bring the component into snoopable mode. When the retry snoop is requested, the component is in full power mode and can properly respond to the snoop request. After the snoop request has been satisfied, the component again enters into a low power mode. Therefore, the component is able to enter into a low power mode in between snoops.
摘要:
The present invention provides for selectively overwriting sets of a cache as a function of a replacement management table and a least recently used function. A class identifier is created as a function of an address miss. A replacement management table is employable to read the class identifier to create a tag replacement control indicia. The cache, comprising a plurality of sets, is employable to disable the replacement of at least one of the plurality of sets as a function of the tag replacement control indicia.
摘要:
Memory management in a computer system is improved by preventing a subset of address translation information from being replaced with other types of address translation information in a cache memory reserved for storing such address translation information for faster access by a CPU. This way, the CPU can identify the subset of address translation information stored in the cache.
摘要:
A system and a method are provided for improving memory management in a multiprocessor system. A direct memory access (DMA) operation is set up for a first processor. A DMA effective address is translated to a virtual address. The virtual address is translated to a physical address, which is used to access a memory hierarchy of the multiprocessor system.
摘要:
Disclosed is a coherent cache system that operates in conjunction with non-homogeneous processing units. A set of processing units of a first configuration has conventional cache and directly accesses common or shared system physical and virtual address memory through the use of a conventional MMU (Memory Management Unit). Additional processors of a different configuration and/or other devices that need to access system memory are configured to store accessed data in compatible caches. Each of the caches is compatible with a given protocol coherent memory management bus interspersed between the caches and the system memory.
摘要:
The present invention discloses, in one aspect, a microprocessor. In one embodiment, the microprocessor includes a processing element configured to process an application using a bandwidth. The microprocessor also includes an access shaper coupled to the processing element and configured to shape storage requests for the processing of the application. In this embodiment, the microprocessor further includes bandwidth management circuitry coupled to the access shaper and configured to track the bandwidth usage based on the requests. A method of coordinating bandwidth allocation and a processor assembly are also disclosed.
摘要:
A system and method are provided for directly accessing a cache for data. A data transfer request is sent to a system bus for transferring data to a system memory. The data transfer request is snooped. A snoop request is sent to a cache. It is determined whether the snoop request has a valid entry in the cache. Upon determining that the snoop request has a valid entry in the cache, the data is caught and sent to the cache for update.