摘要:
Systems and methods involve an implantable device configured to perform at least one cardiac-related function, a patient-external respiratory therapy device, and a communication channel configured to facilitate communication between the implantable device and the respiratory therapy device. The implantable and respiratory therapy devices operate cooperatively via the communication channel to provide one or more of patient monitoring, diagnosis, and therapy. The communication channel may be configured to facilitate communication between an external processing system and at least one of the implantable device and the respiratory therapy device. The processing system is communicatively coupled to at least one of the implantable and respiratory therapy devices via the communication channel to provide one or more of patient monitoring, diagnosis, and therapy.
摘要:
Systems and methods involve an implantable device configured to perform at least one cardiac-related function, a patient-external respiratory therapy device, and a communication channel configured to facilitate communication between the implantable device and the respiratory therapy device. The implantable and respiratory therapy devices operate cooperatively via the communication channel to provide one or more of patient monitoring, diagnosis, and therapy. The communication channel may be configured to facilitate communication between an external processing system and at least one of the implantable device and the respiratory therapy device. The processing system is communicatively coupled to at least one of the implantable and respiratory therapy devices via the communication channel to provide one or more of patient monitoring, diagnosis, and therapy.
摘要:
Disordered breathing events may be classified as central, obstructive or a combination of central an obstructive in origin based on patient motion associated with respiratory effort. Central disordered breathing is associated with disrupted respiration with reduced respiratory effort. Obstructive disordered breathing is associated with disrupted respiration accompanied by respiratory effort. A disordered breathing classification system includes a disordered breathing detector and a respiratory effort motion sensor. Components of the disordered breathing classification system may be fully or partially implantable.
摘要:
Disordered breathing events may be classified as central, obstructive or a combination of central an obstructive in origin based on patient motion associated with respiratory effort. Central disordered breathing is associated with disrupted respiration with reduced respiratory effort. Obstructive disordered breathing is associated with disrupted respiration accompanied by respiratory effort. A disordered breathing classification system includes a disordered breathing detector and a respiratory effort motion sensor. Components of the disordered breathing classification system may be fully or partially implantable.
摘要:
A sleep quality assessment approach involves collecting data based on detected physiological or non-physiological patient conditions. At least one of detecting patient conditions and collecting data is performed using an implantable device. Sleep quality may be evaluated using the collected data by an implantable or patient-external sleep quality processor. One approach to sleep quality evaluation involves computing one or more summary metrics based on occurrences of movement disorders or breathing disorders during sleep.
摘要:
Disordered breathing events may be classified as central, obstructive or a combination of central an obstructive in origin based on patient motion associated with respiratory effort. Central disordered breathing is associated with disrupted respiration with reduced respiratory effort. Obstructive disordered breathing is associated with disrupted respiration accompanied by respiratory effort. A disordered breathing classification system includes a disordered breathing detector and a respiratory effort motion sensor. Components of the disordered breathing classification system may be fully or partially implantable.
摘要:
A sleep quality assessment approach involves collecting data based on detected physiological or non-physiological patient conditions. At least one of detecting patient conditions and collecting data is performed using an implantable device. Sleep quality may be evaluated using the collected data by an implantable or patient-external sleep quality processor. One approach to sleep quality evaluation involves computing one or more summary metrics based on occurrences of movement disorders or breathing disorders during sleep.
摘要:
A sleep quality assessment approach involves collecting data based on detected physiological or non-physiological patient conditions. At least one of detecting patient conditions and collecting data is performed using an implantable device. Sleep quality may be evaluated using the collected data by an implantable or patient-external sleep quality processor. One approach to sleep quality evaluation involves computing one or more summary metrics based on occurrences of movement disorders or breathing disorders during sleep.
摘要:
Systems, devices and methods for using environmental data to manage health care are disclosed. One aspect is an advanced patient management system. In various embodiments, the system includes at least one implantable medical device (IMD) to acquire at least one IMD parameter indicative of patient wellness, means to acquire at least one environmental parameter from at least one external source, and means to correlate the at least one parameter indicative of patient wellness and the at least one environmental parameter to assist with patient health care decisions. Other aspects and embodiments are provided herein.
摘要:
Systems and methods obtain information that allows detection of whether a patient suffers from congestion by monitoring a response of the patient to a recumbent position of the patient's body. The patient may be monitored to determine a respiration pattern for a non-recumbent position such as standing and a respiration pattern for a recumbent position such as lying down. The two patterns may be compared, either by a processing device or a physician, to determine a difference in the two respiration patterns. Furthermore, the congestion may be inferred from detecting an amount of time that the patient spends in a recumbent position or from detecting the recumbent angle that the patient obtains, either of which is presumed to indicate whether a recumbent position presents discomfort to the patient due to the presence of congestion.