摘要:
A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.
摘要:
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.
摘要:
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.
摘要:
A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.
摘要:
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
摘要:
A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.
摘要:
A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.
摘要:
A thermally-activated exhaust treatment device, such as a catalytic converter, for vehicles includes a core having an inner housing and a catalytic material. A jacket includes an outer housing enclosing the inner housing, but characteristically not contacting the inner housing. The inner and outer housings include walls forming a vacuum-drawn sealed insulation cavity around the inner housing. A temperature-activated variable insulator device is positioned within the outer housing and includes a hydrogen source and controls for controlling the variable insulator device. A vacuum-maintenance device is incorporated into the insulation cavity, and includes a small container, getter material positioned in the container, and a porous member allowing gas in the insulation cavity to communicate with the getter material. A multi-layered radiation shield is positioned in the vacuum space and is loosely coupled to the inner housing. A vacuum detector includes a visible indicator of the vacuum in the insulation cavity.
摘要:
A thermally-activated exhaust treatment device, such as a catalytic converter (20); for vehicles includes a core having an inner housing (21) and a catalytic material (27, 27′). A jacket includes an outer housing (22) enclosing the inner housing (21) but characteristically not contacting the inner housing (21). The inner and outer housings (21, 22) includes walls (30, 31) forming a vacuum-drawn scaled insulation cavity (26) around the inner housing (21). A temperature-activated variable insulator device is positioned within the outer housing (22) and includes a hydrogen source (32) and controls for controlling the variable insulator device. A vacuum-maintenance device is incorporated into the insulation cavity (26), and includes a small container, getter material positioned in the container, a porous member allowing gas in the insulation cavity (26) to communicate with the getter material. A multi-layered radiation shield is position in the vacuum space and is loosely coupled to the inner housing (21). A vacuum detector includes a visible indicator of the vacuum in the insulation cavity (26).
摘要:
A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.