摘要:
Techniques are provided herein to produce encoded video bitstreams and to similarly decode encoded video bitstreams according to a coding standard not supported by an on-chip encoder/decoder. For purposes of encoding, a video sequence is received at a first device. A first bitstream is generated at the first device by encoding the video sequence according to a first coding standard and information associated with the video sequence is generated at the first device according to a second coding standard. The first bitstream and the information are then transmitted to a second device. At the second device the first bitstream is decoded to produce a second bitstream. The second bitstream and the information are combined by removing syntax elements associated with the first coding standard from the second bitstream and adding the information to produce a third bitstream according to the second coding standard. Similar techniques are provided for decoding an encoded bitstream to recover a video sequence.
摘要:
Techniques are provided herein to produce encoded video bitstreams and to similarly decode encoded video bitstreams according to a coding standard not supported by an on-chip encoder/decoder. For purposes of encoding, a video sequence is received at a first device. A first bitstream is generated at the first device by encoding the video sequence according to a first coding standard and information associated with the video sequence is generated at the first device according to a second coding standard. The first bitstream and the information are then transmitted to a second device. At the second device the first bitstream is decoded to produce a second bitstream. The second bitstream and the information are combined by removing syntax elements associated with the first coding standard from the second bitstream and adding the information to produce a third bitstream according to the second coding standard. Similar techniques are provided for decoding an encoded bitstream to recover a video sequence.
摘要:
A method is provided in one example embodiment and includes receiving video data and gathering statistics associated with the video data. At least some of the video data is broken into slices, each of the slices representing a partition in a video frame within the video data. Each frame is encoded with one or more quality layers based on an outgoing rate and based on a number of central processing unit (CPU) cycles, wherein one or more quality layers of the frames are dropped in the encoding process. In more specific embodiments, the statistics relate to how many bits are used for encoding the quality layers of the video data and how much complexity is required for encoding the quality layers of the video data. After the statistics gathering, adjustments to a network rate are executed.
摘要:
Techniques are provided herein for estimating video quality corruption at a device in a network from a data stream encapsulating a video transport stream comprising one or more video frames. The video transport stream is decoded to produce a current video frame. A current loss affected region map is generated comprising values configured to indicate a level of quality for each macroblock in the current video frame, and a decoder based or deterministic quality corruption metric is generated based on the values in the current loss affected region map. When the network device does not have video decoding capability, techniques are further provided for computing a statistics-based video quality corruption metric based on a data loss rate for the current video frame and other statistics.
摘要:
A method is provided in one example embodiment and includes receiving video data and gathering statistics associated with the video data. At least some of the video data is broken into slices, each of the slices representing a partition in a video frame within the video data. Each frame is encoded with one or more quality layers based on an outgoing rate and based on a number of central processing unit (CPU) cycles, wherein one or more quality layers of the frames are dropped in the encoding process. In more specific embodiments, the statistics relate to how many bits are used for encoding the quality layers of the video data and how much complexity is required for encoding the quality layers of the video data. After the statistics gathering, adjustments to a network rate are executed.
摘要:
A fusion protein having a non-immunoglobulin polypeptide having a cysteine residue proximal to the C terminal thereof, and an immunoglobulin component with a mutated hinge region is provided. The mutation comprises a point mutated site corresponding in position to the position in a native hinge region of the cysteine residue located nearest the cysteine residue of the non-Ig component. The distance from the cysteine residue of the non-immunoglobulin polypeptide and any remaining cysteine residues of the mutated hinge region is sufficient to prevent the formation of a disulphide bond therebetween.
摘要:
The present invention discloses a method to operate phone using a single key, first provide method to form ‘key value’: (1) When the key is just closed, plus 1 to the ‘key value’, (2) When the key closing time is greater than time t1, form ‘closing key value’, (3) When the key closing time is smaller than t1 and the immediate key releasing time is greater than t2, store the key value as ‘releasing key value’, (4) When the key closing time is smaller than t1 and the immediate key releasing time is smaller than t2, skip to step (1). The ‘releasing key values’ can be used to represent the numerical and alphabetical keys on typical keypad of phone, while the ‘closing key values’ can be used to represent the function key on typical keypad of phone, so that the complete function of a typical phone keypad can be realized using only one key. Therefore, a phone can be made very small, which can be especially useful when installed on small Bluetooth device that connects to phone, since not only can it answer incoming phone calls, but also making outgoing phone calls.
摘要:
A pressure sensing device is disclosed in the present disclosure. The pressure sensing device includes a bottom plate, a flexible shell and a MEMS pressure sensor. The flexible shell covers the bottom plate for forming a hermetical cavity, and the MEMS pressure sensor is accommodated in the hermetical cavity. Air in the hermetical cavity is compressed when the flexible shell is pressed, the MEMS pressure sensor is configured for detecting variation of an air pressure within the hermetical cavity when the flexible shell is pressed, and convert the variation of the air pressure into an electric signal.
摘要:
The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: —a reactor unit for contacting catalyst and hydrocarbon reactants; —a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; —a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; —a catalyst phase recycle means to recycle at least part of the catalyst phase from the separator unit to the reactor unit; which method includes: —adapting the catalyst phase recycle means by providing a means for acid injection and/or a means for halohydrocarbon injection into the catalyst recycle means. The invention further provides a method for the production of alkylate.
摘要:
A method for making conductive wires is provided. Firstly, an ink having carbon nanotubes is provided. Secondly, a baseline is formed using the ink on a substrate. Thirdly, the baseline is electroless plated.