摘要:
The present invention provides a core-shell nanoparticle that includes a metal-oxide shell and a nanoparticle. Pores extend from an outer surface to an inner surface of the shell. The inner surface of the shell forms a void, which is filled by the nanoparticle. The pores allow gas to transfer from outside the shell to a surface of the nanoparticle. The present invention also provides a method of making a core-shell nanoparticle includes forming a metal-oxide shell on a colloidal nanoparticle, which forms a precursor core-shell nanoparticle. A capping agent is removed from the precursor core-shell nanoparticle, which produces the core-shell nanoparticle. The present invention also provides a method of using a nanocatalyst of the present invention includes providing the nanocatalyst, which is the core-shell nanoparticle. Reactants are introduced in a vicinity of the nanocatalyst, which produces a reaction that is facilitated or enhanced by the nanocatalyst.
摘要:
A sulfur-containing mesoporous carbon that has mesopores with an average diameter of 2 to 10 nm, a method of preparing the same, a catalyst containing the mesoporous carbon as a catalyst support, and a fuel cell using the catalyst in which the sulfur-containing mesoporous carbon has a good affinity for and adhesion to catalyst particles so as to strongly support the catalyst particles due to the sulfur atoms substituting for carbons in an OMC carbon skeleton structure. The growth of metal catalyst particles is prevented when heat-treating the metal catalyst particles. The catalyst using the sulfur-containing mesoporous carbon can be applied to a fuel cell to prevent a reduction in catalytic activity due to increased particle size by an accumulation of catalyst particles. The catalyst containing the sulfur-containing mesoporous carbon as a catalyst support can be used to manufacture a fuel cell having an improved performance.
摘要:
A device is disclosed for directly charging raw material into a melter-gasifier in a molten iron manufacturing facility using coal and fine iron ore. The elutriation of fine dusts is inhibited while directly charging coal and reduced fines into the melter-gasifier. The direct charging device is applied to a fluidized bed type final reducing furnace and has a plurality of discharging outlets for discharging the fines. The melter-gasifier receives lump coal to form a coal packed bed within it and receives the reduced fine iron ore from the final reducing furnace. The direct charging device includes a plurality of charging inlets formed on the side wall of the melter-gasifier connected by conduits to the discharging outlets of the final reducing furnace whereby reduced fine iron ore is continuously charged from the final reducing furnace to the coal packed bed of the melter-gasifier.
摘要:
A counter electrode for a photovoltaic cell and a photovoltaic cell including the same include a transparent substrate and a catalyst layer formed on the transparent substrate using a supported catalyst The counter electrode of the present invention has an economical preparation cost and process, and also has an enlarged contact area with an electrolyte layer of the cell, leading to improved catalytic activity. Thus, in the case where the counter electrode is applied to the photovoltaic cell, excellent photoconversion efficiency is exhibited. In an exemplary embodiment, the photovoltaic cell is a dye-sensitized photovoltaic cell including such a counter electrode.
摘要:
Disclosed is a carbon molecular sieve material. It is prepared by a method comprising the step of adsorbing a mixture of an aqueous carbohydrate solution and an acid or a polymer precursor into pores of an inorganic molecular sieve material; drying and polymerizing the adsorbates; re-adsorbing a mixture of an aqueous carbohydrate solution and an acid or a polymer precursor onto the resultant mixture obtained in the previous steps, and drying and polymerizing the adsorbates; carbonizing the adsorbates through thermal decomposition; and removing the framework of the inorganic molecular sieve from the carbonized adsorbates by use of a fluoric acid or a sodium hydroxide solution. With uniformity in pore size and regularity in structure, the carbon molecular sieve is suitable for use in catalysts, adsorbents, supports, sensors, electrodes, etc.
摘要:
An apparatus and a method for manufacturing molten pig iron by using a fine iron ore are disclosed. Coal is used to produce a reducing gas, and a fine iron ore is used to produce a molten iron and a reduced iron in a simple and efficient manner. The apparatus for manufacturing a molten iron by directly using coal as the fuel is as follows. A high temperature reducing gas is sent from a melter-gasifier to a fluidized bed lime stone calcining furnace to calcine the lime stone. The reducing gas is supplied to a second fluidized bed reducing furnace so as to manufacture a reduced iron directly. An off-gas from the second fluidized bed reducing furnace is supplied to a first fluidized bed reducing furnace (disposed above the second fluidized bed reducing furnace) to pre-heat and pre-reduce the fine iron ore. The calcined lime stone and the finally reduced iron are supplied to a melter-gasifier to manufacture a molten pig iron.
摘要:
A counter electrode for a photovoltaic cell and a photovoltaic cell including the same include a transparent substrate and a catalyst layer formed on the transparent substrate using a supported catalyst The counter electrode of the present invention has an economical preparation cost and process, and also has an enlarged contact area with an electrolyte layer of the cell, leading to improved catalytic activity. Thus, in the case where the counter electrode is applied to the photovoltaic cell, excellent photoconversion efficiency is exhibited. In an exemplary embodiment, the photovoltaic cell is a dye-sensitized photovoltaic cell including such a counter electrode.
摘要:
A method of preparing a mesoporous carbon includes mixing a mesophase pitch, a carbon precursor, an acid, and a solvent to obtain a carbon precursor mixture; impregnating an ordered mesoporous silica (OMS) with the carbon precursor mixture; heat-treating and carbonizing the impregnated OMS to form an OMS-carbon composite; and removing the OMS from the OMS-carbon composite. The mesoporous carbon uses the mesophase pitch and the carbon precursor to reduce sheet resistance, and thus can efficiently transfer electric energy. Such mesoporous carbon can be used as a conductive material of electrodes for fuel cells. When the mesoporous carbon is used as a support for catalysts of electrodes, a supported catalyst containing the support can be used to manufacture a fuel cell having high efficiency.