摘要:
Disclosed is a hybrid pole bearingless switched reluctance motor (BLSRM). The BLSRM includes a stator provided with windings, a rotor rotating about an axis when current is conducted to the windings. The rotor includes a plurality of rotor poles extending radially outward, and the stator includes a plurality of stator poles extending radially inward. The windings include suspending windings to generate radial force for the rotor and torque windings to generate torque. The suspending windings are mutually separated from the torque windings. Through the use of the hybrid pole BLSRM, a stator pole generating the radial force can be controlled independently from the stator pole generating the torque by separately arranging the stator pole generating the radial force and the stator pole generating torque based on the analysis of radial force and torque characteristics according to the position of the stator poles.
摘要:
Disclosed is a hybrid pole bearingless switched reluctance motor (BLSRM). The BLSRM includes a stator provided with windings, a rotor rotating about an axis when current is conducted to the windings. The rotor includes a plurality of rotor poles extending radially outward, and the stator includes a plurality of stator poles extending radially inward. The windings include suspending windings to generate radial force for the rotor and torque windings to generate torque. The suspending windings are mutually separated from the torque windings. Through the use of the hybrid pole BLSRM, a stator pole generating the radial force can be controlled independently from the stator pole generating the torque by separately arranging the stator pole generating the radial force and the stator pole generating torque based on the analysis of radial force and torque characteristics according to the position of the stator poles.
摘要:
Disclosed is a method for suppressing a speed ripple occurring during an operation of an AC motor by using a torque compensator based on an activation function. The method includes the steps of calculating a speed error ωerr based on a reference speed ωref and an actual speed ωact; calculating a controller output Trm by using the speed error ωerr as an input of a PI control and an operation of a compensated torque Tcom; and determining a torque variation based on the controller output Trm and a reference torque Tref and operating the torque variation in relation to an anti-windup gain Ka to use torque variation as an input of an integral (I) control. The method suppresses the speed ripple by compensating for the torque ripple through a controller which calculates the compensated torque by taking the signs of the speed error and the differential speed error into consideration.
摘要:
Disclosed here is a speed control apparatus for a switched reluctance motor (SRM) including: a current control unit generating command currents for each period; a driving unit generating a pulse width modulation (PWM) signal to allow a voltage to be applied to the SRM; a magnetic flux error calculating unit calculating a magnetic flux error; a rotor position estimating unit calculating an estimation position using the magnetic flux error to output the estimation position to the magnetic flux error calculating unit; and a mode change-over unit allowing a command position corresponding to a command speed to be input to the magnetic flux error calculating unit.
摘要:
Disclosed is a passive converter for a drive device of a switched reluctance motor (SRM), in which high demagnetization voltage for the SRM is provided. The converter includes a rectifier which smoothes input voltage to supply DC voltage, a boost circuit connected with the rectifier, and an asymmetric converter connected with the boost circuit, and the boost circuit includes first to third diodes and first and second capacitors. The high demagnetization voltage is generated at current duration of a single phase or poly-phase SRM by using the passive converter for the drive device of the SRM, so that the driving efficiency and the output power of the SRM can be increased.
摘要:
Disclosed here is a speed control apparatus for a switched reluctance motor (SRM) including: a current control unit generating command currents for each period; a driving unit generating a pulse width modulation (PWM) signal to allow a voltage to be applied to the SRM; a magnetic flux error calculating unit calculating a magnetic flux error; a rotor position estimating unit calculating an estimation position using the magnetic flux error to output the estimation position to the magnetic flux error calculating unit; and a mode change-over unit allowing a command position corresponding to a command speed to be input to the magnetic flux error calculating unit.
摘要:
Disclosed herein are an initial driving apparatus and method of a two-phase switched reluctance motor (SRM). The initial driving apparatus of a two-phase SRM includes: a driving unit; a current measuring unit; a memory; and a controlling unit comparing the currents measured in the current measuring unit and a difference between the currents with the data currents and the difference between the data currents stored in the memory to determine an initial position, thereby initially driving the SRM. Therefore, the two-phase SRM may be stably operated.
摘要:
A semiconductor device has a first semiconductor die having at least one metal pillar formed along an inner perimeter and at least one bond pad formed along an outer perimeter. A second semiconductor die has at least one metal pillar. A conductive bump connects the at least one metal pillar of the first semiconductor die to the at least one metal pillar of the second semiconductor die. At least one metal dam is formed on the first semiconductor die between the at least one metal pillar of the first semiconductor die and the at least one bond pad.
摘要:
A semiconductor device has a semiconductor die having a first surface and a second surface wherein at least one bond pad is formed on the first surface. A passivation layer is formed on the first surface of the semiconductor device, wherein a central area of the at least one bond is exposed. A seed layer is formed on exposed portions of the bond pad and the passivation layer. A conductive pillar is formed on the seed layer. The conductive pillar has a base portion wherein the base portion has a diameter smaller than the seed layer and a stress relief portion extending from a lateral surface of a lower section of the base portion toward distal ends of the seed layer. A solder layer is formed on the conductive pillar.
摘要:
A semiconductor device has a semiconductor die having a first surface and a second surface wherein at least one bond pad is formed on the first surface. A passivation layer is formed on the first surface of the semiconductor device, wherein a central area of the at least one bond is exposed. A seed layer is formed on exposed portions of the bond pad and the passivation layer. A conductive pillar is formed on the seed layer. The conductive pillar has a base portion wherein the base portion has a diameter smaller than the seed layer and a stress relief portion extending from a lateral surface of a lower section of the base portion toward distal ends of the seed layer. A solder layer is formed on the conductive pillar.