摘要:
Especially for use in the semiconductor industry, a displacement device (701) is disclosed comprising a first part comprising a carrier (714) on which a system of magnets (710) is arranged according to a pattern of row and columns extending parallel to the X-direction and the Y-direction, respectively. The magnets in each row and column are arranged according to a Halbach array, i.e. the magnetic orientation of successive magnets in each row and each column rotates 90° counter-clockwise. The second part comprises an electric coil system (712) with two types of electric coils, one type having an angular offset of +45°, and the other type having an offset of −45° with respect to the X-direction. The first part (714, 710) is movable over a range of centimeters or more with respect to the stationary second part (712). For high precision positioning of the first part, an interferometer system (731, 730) is provided.
摘要:
Especially for use in the semiconductor industry, a displacement device (701) is disclosed comprising a first part comprising a carrier (714) on which a system of magnets (710) is arranged according to a pattern of row and columns extending parallel to the X-direction and the Y-direction, respectively. The magnets in each row and column are arranged according to a Halbach array, i.e. the magnetic orientation of successive magnets in each row and each column rotates 90° counter-clockwise. The second part comprises an electric coil system (712) with two types of electric coils, one type having an angular offset of +45°, and the other type having an offset of −45° with respect to the X-direction. The first part (714, 710) is movable over a range of centimeters or more with respect to the stationary second part (712). For high precision positioning of the first part, an interferometer system (731, 730) is provided.
摘要:
A apparatus processes an object (19), such as a semi-conductor wafer at accurately controlled positions. The object (19) is supported by a working platform (12) that is moveable along a path. A suspension actuator part (14) attached to the working platform (12), contains a soft magnetic core (24) with poles facing the surface of a soft magnetic element (34) on the support structure along the path and a winding (20) for application of a current to generate a magnetic field that runs through the core (24) v the poles and returns via the soft magnetic element (34). A sensor (17) senses a measured position of the suspension actuator part (14) relative to the position reference element (16). A control circuit comprises an outer control circuit (40) and an inner control circuit (42). The outer control circuit (40) receives a sensing result and determines force set point information to regulate the measured position of the actuator part (14) to a required value. The inner control circuit (42) receives the force set point information and controls the current to realize a force between the actuator part (14) and the support structure (10) according to the force set point information.
摘要:
A method for positioning a substage, supported by a main stage, relative to a reference object, the substage moveable in a direction between a first and second position relative to the main stage. The method includes positioning the first stage using a passive force system that is activated by positioning the main stage. The passive force system includes two magnet systems, each magnet system being configured to apply a force in the direction to the first stage with respect to the second stage in a non-contact manner, the forces resulting in a resultant force applied to the first stage in the direction by the passive force system. A magnitude and/or a direction of the resultant force depends on the position of the first stage relative to the second stage, and the first stage has a zero-force position between the first and second position in which the resultant force is zero.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam and a support constructed to support a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. The lithographic apparatus further includes a substrate table constructed to hold a substrate; a positioner constructed to position the substrate table; a projection system configured to project the patterned radiation beam onto a target portion of the substrate; a substrate surface actuator arranged to engage a part of a surface of the substrate facing the projection system, and a position controller configured to control a position of the substrate table, the position controller being arranged to drive the positioner and the substrate surface actuator.
摘要:
A lithographic projection apparatus having a masking device for obscuring part of at least one of a patterning device used for patterning a projection beam before imaging the patterned beam onto a substrate. The masking device includes a first masking structure to obscure said part of said patterning device in a first direction and a second masking structure to obscure said part in a second different direction, wherein said first and second masking structure are disposed in the vicinity of said focal plane in a mechanically uncoupled arrangement with respect to each other.
摘要:
A lithographic apparatus is presented in which vibrations induced by reaction forces exerted on a base frame BF by accelerations within the apparatus are eliminated without the need for complex positioning systems and several balance masses. This is achieved by using feed-forward control to apply a compensating force using actuators to the base frame, based on knowledge of the movements and accelerations of the substrate table and other parts within the apparatus.
摘要:
A device for positioning a body (5) by means of at least one pair of electromagnets (13, 15). A position sensor (29) measures the size of an air gap (23) between one of the electromagnets (13, 15) and a guide beam (1). An output signal of the position sensor (29) is applied to an electronic control unit (35) which passes a control current through the electromagnets (13, 15) in dependence on a difference between the measured and a desired size of the air gap (23). In one embodiment an electrical switch (53) is connected between the control unit (35) and the two electromagnets (13, 15) controlled by the control unit (35), applying the control current to only one of the two electromagnets (13, 15) in dependence on the polarity of a control signal from the control unit (35). The use of the switch insures that the control current flows through only one of the two electromagnets at a time so that in a simple manner a difference necessary for supporting the body is achieved between the forces exerted on the guide beam (1) by the electromagnets (13, 15). the electrical resistance losses in the electromagnets (13, 15) in such a device are low, the device is eminently suitable for use as an electromagnetic bearing in an optical lithographical device for the irradiation of semiconductor substrates, or in other precision machines.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam and a support constructed to support a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. The lithographic apparatus further includes a substrate table constructed to hold a substrate; a positioner constructed to position the substrate table; a projection system configured to project the patterned radiation beam onto a target portion of the substrate; a substrate surface actuator arranged to engage a part of a surface of the substrate facing the projection system, and a position controller configured to control a position of the substrate table, the position controller being arranged to drive the positioner and the substrate surface actuator.
摘要:
A lithographic apparatus includes a position controller configured to control a position of a patterning device in its planar direction by selectively pressing at least one of the side faces of the patterning device. The position controller includes a gas pressure supply and one or more outflow openings directed towards at least one side face of the patterning device so as to exert pressurized gas on this side face in order to control the position of the patterning device in its planar direction in a contactless manner.