摘要:
Novel volatile barium complexes are disclosed which are very stable and evaporate cleanly at elevated temperatures. Such complexes are highly suited for use as a barium source in OMCVD processes.
摘要:
An improved method is provided for depositing a thin copper aluminum alloy film on a patterned silicon substrate. A copper base layer conforming to the existing pattern is initially formed on the surface of the substrate, followed by contact with vapors of an aminealane compound, which causes aluminum to be selectively deposited on the copper base layer portion of the substrate. Preferably, copper is applied to a diffusion barrier surface such as tungsten using chemical vapor deposition from a complex of copper (I) perfluoroalkyl-.beta.-diketonate and an olefin or silylolefin. The entire process of developing an alloy film can be carried out without exceeding 200.degree. C.
摘要:
A process is provided for selectively depositing copper films on metallic or other electrically conducting portions of substrate surfaces by contacting the substrate at a temperature from 110.degree. to 190.degree. C. with a volatile organometallic copper complex, in the gas phase, represented by the structural formula: ##STR1## wherein R.sup.1 and R.sup.3 are each independently C.sub.1 -C.sub.8 perfluoroalkyl, R.sup.2 is H or C.sub.1 -C.sub.8 perfluoroalkyl and L is carbon monoxide, an isonitrile, or an unsaturated hydrocarbon ligand containing at least one non-aromatic unsaturation.
摘要:
An extremely hard, fine grained tungsten carbide produced by thermochemical deposition is described. The tungsten carbide consists primarily of substantially pure tungsten carbide wherein the tungsten carbide consists of WC.sub.1-x, where x is 0 to about 0.4. The disclosed tungsten carbide is free of columnar grains and consists essentially of extremely fine, equiaxial crystals. Also disclosed is a method of producing the disclosed material.
摘要:
The invention is a process for recovering oxygen from an oxygen-containing gaseous mixture containing one or more components selected from water, carbon dioxide or a volatile hydrocarbon which process utilizes ion transport membranes comprising a multicomponent metallic oxide containing strontium, calcium or magnesium. The process utilizes a temperature regime which overcomes problems associated with degradation of strontium-, calcium- and magnesium-containing multicomponent oxides caused by carbon dioxide.
摘要:
A thick, adherent and coherent polycrystalline diamond (PCD) coated substrate product is disclosed which comprises either a metallic or ceramic substrate and a plurality of separately deposited PCD layers of substantially uniform microstructure and having high electrical resistivity. The method for depositing multi-layers of PCD film onto the substrate comprises chemically depositing at least two separate polycrystalline diamond layers onto the substrate deposition conditions which are substantially different between cycles. The method enables one to deposit PCD films having a thickness of at least 12 microns for applications on flat as well as curved substrates having wide use in the electronics industry. Thick PCT films of this invention have been found to be ideal for dissipating heat from radio frequency (RF) and microwave (MW) devices.
摘要:
A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
摘要:
A process for producing hydrogen peroxide wherein a gaseous mixture comprising hydrogen and oxygen is contacted with a catalyst in the presence of water and an organic solvent wherein:(i) the organic solvent is immiscible with water and unreactive with hydrogen peroxide under the contacting conditions;(ii) the distribution coefficient for hydrogen peroxide between the water and the organic solvent is greater than 1;(iii) the catalyst is of the formula L.sub.2 MX.sub.2 wherein L is a ligand represented by the formula A R.sub.1 R.sub.2 R.sub.3 wherein R.sub.1 R.sub.2 and R.sub.3 are alkyl, cycloalkyl or aryl groups, hydrogen or halogen, A is a Group 5b element selected from the group consisting of nitrogen, phosphorous and arsenic, M is a Group 8 metal and X is halogen, said catalyst being soluble in said organic solvent and insoluble in water; and(iv) the gaseous mixture is non-ignitable under the process conditionscharacterized in that the organic solvent is selected from the group consisting of fluorocarbons, halofluorocarbons and mixtures thereof.
摘要:
Hydrogen peroxide is synthesized by reacting hydrogen and oxygen in a two phase mixture of water and an organic. The mixture contains a catalyst which is insoluble in water but dissolves in the organic. The hydrogen peroxide is extracted in the water.The catalyst is L.sub.2 MX.sub.2 where:L is a ligand containing a Group 5b element (preferably phosphorous);M is a Group 8 metal (preferably palladium); andX is a halogen (preferably chlorine).
摘要:
Tubular solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of tubular membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.