摘要:
A method for tone inversion for integrated circuit fabrication includes providing a substrate with an underlayer on top of the substrate; creating a first pattern, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; covering the first pattern with a layer of image reverse material (IRM); and etching the second pattern into the substrate. A structure for tone inversion for integrated circuit fabrication includes a substrate; a partially etched underlayer comprising a first pattern located over the substrate, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; and an image reversal material (IRM) layer located over the partially etched underlayer.
摘要:
An improved method of performing sidewall spacer imager transfer is presented. The method includes forming a set of sidewall spacers next to a plurality of mandrels, the set of sidewall spacers being directly on top of a hard-mask layer; transferring image of at least a portion of the set of sidewall spacers to the hard-mask layer to form a device pattern; and transferring the device pattern from the hard-mask layer to a substrate underneath the hard-mask layer.
摘要:
A cap material layer is deposited on a metal nitride layer. An antireflective coating (ARC) layer, an organic planarizing layer (OPL), and patterned line structures are formed upon the cap material layer. The pattern in the patterned line structures is transferred into the ARC layer and the OPL. Exposed portions of the cap material layer are etched simultaneously with the etch removal of the patterned line structures and the ARC layer. The OPL is employed to etch the metal nitride layer. The patterned cap material layer located over the metal nitride layer protects the top surface of the metal nitride layer, and enables high fidelity reproduction of the pattern in the metal nitride layer without pattern distortion. The metal nitride layer is subsequently employed as an etch mask for pattern transfer into an underlying layer.
摘要:
An improved method of performing sidewall spacer imager transfer is presented. The method includes forming a set of sidewall spacers next to a plurality of mandrels, the set of sidewall spacers being directly on top of a hard-mask layer; transferring image of at least a portion of the set of sidewall spacers to the hard-mask layer to form a device pattern; and transferring the device pattern from the hard-mask layer to a substrate underneath the hard-mask layer.
摘要:
A method for tone inversion for integrated circuit fabrication includes providing a substrate with an underlayer on top of the substrate; creating a first pattern, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; covering the first pattern with a layer of image reverse material (IRM); and etching the second pattern into the substrate. A structure for tone inversion for integrated circuit fabrication includes a substrate; a partially etched underlayer comprising a first pattern located over the substrate, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; and an image reversal material (IRM) layer located over the partially etched underlayer.
摘要:
A method of forming a trench is provided that includes providing a stack having a semiconductor layer or dielectric layer, a metal nitride layer, a leveling layer, and a first mask layer. First trenches are etched through the first mask layer and the leveling layer. The first mask layer is removed. A second mask layer is formed on the leveling layer. Second trenches are formed through the second mask layer, wherein the base of the second trenches do not extend through the metal nitride layer. The second mask layer is removed. Exposed portions of the metal nitride layer are etched selectively to the semiconductor layer and remaining portions of the leveling layer to extend the first trenches and the second trenches into contact with an upper surface of the semiconductor layer.
摘要:
A cap material layer is deposited on a metal nitride layer. An antireflective coating (ARC) layer, an organic planarizing layer (OPL), and patterned line structures are formed upon the cap material layer. The pattern in the patterned line structures is transferred into the ARC layer and the OPL. Exposed portions of the cap material layer are etched simultaneously with the etch removal of the patterned line structures and the ARC layer. The OPL is employed to etch the metal nitride layer. The patterned cap material layer located over the metal nitride layer protects the top surface of the metal nitride layer, and enables high fidelity reproduction of the pattern in the metal nitride layer without pattern distortion. The metal nitride layer is subsequently employed as an etch mask for pattern transfer into an underlying layer.
摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
A method for patterning self-aligned vias in a dielectric. The method includes forming a first trench partially through a hard mask, where the trench corresponds to a desired wiring path in the dielectric. The trench should be formed on a sub-lithographic scale. Then, form a second trench, also of a sub-lithographic scale, that intersects the first trench. The intersection forms a pattern extending through the depth of the hard mask, and corresponds to a via hole in the dielectric. The via hole is etched into the dielectric through the hard mask. Then the first trench is extended through the hard mask and the exposed area is etched to form the wiring path, which intersects the via hole. Conductive material is deposited to form a sub-lithographic via and wiring. This method may be used to form multiple vias of sub-lithographic proportions and with a sub-lithographic pitch.