摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
A method for tone inversion for integrated circuit fabrication includes providing a substrate with an underlayer on top of the substrate; creating a first pattern, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; covering the first pattern with a layer of image reverse material (IRM); and etching the second pattern into the substrate. A structure for tone inversion for integrated circuit fabrication includes a substrate; a partially etched underlayer comprising a first pattern located over the substrate, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; and an image reversal material (IRM) layer located over the partially etched underlayer.
摘要:
A method for tone inversion for integrated circuit fabrication includes providing a substrate with an underlayer on top of the substrate; creating a first pattern, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; covering the first pattern with a layer of image reverse material (IRM); and etching the second pattern into the substrate. A structure for tone inversion for integrated circuit fabrication includes a substrate; a partially etched underlayer comprising a first pattern located over the substrate, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; and an image reversal material (IRM) layer located over the partially etched underlayer.
摘要:
Methods of forming a conductive element for an integrated circuit (IC) chip and a related structure are disclosed. One embodiment of the method may include forming a first sacrificial layer having a pattern therein for a first dielectric layer to surround the conductive element; forming the first dielectric layer within the patterned first sacrificial layer; removing the patterned first sacrificial layer, leaving the first dielectric layer; and forming the conductive element in a space vacated by the patterned first sacrificial layer. The methods prevent damage caused to low dielectric constant dielectric layers during etching and stripping/cleaning processes.
摘要:
The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.
摘要:
The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.
摘要:
An article including a microelectronic substrate is provided as an article usable during the processing of the microelectronic substrate. Such article includes a microelectronic substrate having a front surface, a rear surface opposite the front surface and a peripheral edge at boundaries of the front and rear surfaces. The front surface is a major surface of the article. A removable annular edge extension element having a front surface, a rear surface and an inner edge extending between the front and rear surfaces has the inner edge joined to the peripheral edge of the microelectronic substrate. In such way, a continuous surface is formed which includes the front surface of the edge extension element extending laterally from the peripheral edge of the microelectronic substrate and the front surface of the microelectronic substrate, the continuous surface being substantially co-planar and flat where the peripheral edge is joined to the inner edge.
摘要:
A method is provided that includes first etching a substrate according to a first mask. The first etching forms a first etch feature in the substrate to a first depth. The first etching also forms a sliver opening in the substrate. The sliver opening may then be filled with a fill material. A second mask may be formed by removing a portion of the first mask. The substrate exposed by the second mask may be etched with a second etch, in which the second etching is selective to the fill material. The second etching extends the first etch feature to a second depth that is greater than the first depth, and the second etch forms a second etch feature. The first etch feature and the second etch feature may then be filled with a conductive metal.
摘要:
A stack of a first metal line and a first dielectric cap material portion is formed within a line trench of first dielectric material layer. A second dielectric material layer is formed thereafter. A line trench extending between the top surface and the bottom surface of the second dielectric material layer is patterned. A photoresist layer is applied over the second dielectric material layer and patterned with a via pattern. An underlying portion of the first dielectric cap material is removed by an etch selective to the dielectric materials of the first and second dielectric material layer to form a via cavity that is laterally confined along the widthwise direction of the line trench and along the widthwise direction of the first metal line. A dual damascene line and via structure is formed, which includes a via structure that is laterally confined along two independent horizontal directions.