摘要:
A cap material layer is deposited on a metal nitride layer. An antireflective coating (ARC) layer, an organic planarizing layer (OPL), and patterned line structures are formed upon the cap material layer. The pattern in the patterned line structures is transferred into the ARC layer and the OPL. Exposed portions of the cap material layer are etched simultaneously with the etch removal of the patterned line structures and the ARC layer. The OPL is employed to etch the metal nitride layer. The patterned cap material layer located over the metal nitride layer protects the top surface of the metal nitride layer, and enables high fidelity reproduction of the pattern in the metal nitride layer without pattern distortion. The metal nitride layer is subsequently employed as an etch mask for pattern transfer into an underlying layer.
摘要:
A cap material layer is deposited on a metal nitride layer. An antireflective coating (ARC) layer, an organic planarizing layer (OPL), and patterned line structures are formed upon the cap material layer. The pattern in the patterned line structures is transferred into the ARC layer and the OPL. Exposed portions of the cap material layer are etched simultaneously with the etch removal of the patterned line structures and the ARC layer. The OPL is employed to etch the metal nitride layer. The patterned cap material layer located over the metal nitride layer protects the top surface of the metal nitride layer, and enables high fidelity reproduction of the pattern in the metal nitride layer without pattern distortion. The metal nitride layer is subsequently employed as an etch mask for pattern transfer into an underlying layer.
摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
A metal layer is deposited over a material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation or nitridation. A hard mask portion is formed over the metal layer. A plasma impermeable spacer is formed on at least one first sidewall of the hard mask portion, while at least one second sidewall of the hard mask portion is physically exposed. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. A sequence of a surface pull back of the hard mask portion, cavity etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a hole pattern having a spacing that is not limited by lithographic minimum dimensions.
摘要:
A metal layer is deposited over a material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation or nitridation. A hard mask portion is formed over the metal layer. A plasma impermeable spacer is formed on at least one first sidewall of the hard mask portion, while at least one second sidewall of the hard mask portion is physically exposed. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. A sequence of a surface pull back of the hard mask portion, cavity etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a hole pattern having a spacing that is not limited by lithographic minimum dimensions.
摘要:
A metal layer is deposited over an underlying material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation and/or nitridation. A hard mask portion is formed over the metal layer. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. The sequence of a surface pull back of the hard mask portion, trench etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a line pattern having a spacing that is not limited by lithographic minimum dimensions.
摘要:
A metal layer is deposited over an underlying material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation and/or nitridation. A hard mask portion is formed over the metal layer. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. The sequence of a surface pull back of the hard mask portion, trench etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a line pattern having a spacing that is not limited by lithographic minimum dimensions.
摘要:
The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.
摘要:
The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.