摘要:
Disclosed are a method and a system for processing a semiconductor structure of the type including a substrate, a dielectric layer, and a TaN—Ta liner on the dielectric layer. The method comprises the step of using XeF2 to remove at least a portion of the TaN—Ta liner completely to the dielectric layer. In the preferred embodiments, the present invention uses XeF2 selective gas phase etching as alternatives to Ta—TaN Chemical Mechanical Polishing (CMP) as a basic “liner removal process” and as a “selective cap plating base removal process.” In this first use, XeF2 is used to remove the metal liner, TaN—Ta, after copper CMP. In the second use, the XeF2 etch is used to selectively remove a plating base (TaN—Ta) that was used to form a metal cap layer over the copper conductor.
摘要:
Disclosed are a method and a system for processing a semiconductor structure of the type including a substrate, a dielectric layer, and a TaN—Ta liner on the dielectric layer. The method comprises the step of using XeF2 to remove at least a portion of the TaN—Ta liner completely to the dielectric layer. In the preferred embodiments, the present invention uses XeF2 selective gas phase etching as alternatives to Ta—TaN Chemical Mechanical Polishing (CMP) as a basic “liner removal process” and as a “selective cap plating base removal process.” In this first use, XeF2 is used to remove the metal liner, TaN—Ta, after copper CMP. In the second use, the XeF2 etch is used to selectively remove a plating base (TaN—Ta) that was used to form a metal cap layer over the copper conductor.
摘要:
Disclosed are a method and a system for processing a semiconductor structure of the type including a substrate, a dielectric layer, and a TaN—Ta liner on the dielectric layer. The method comprises the step of using XeF2 to remove at least a portion of the TaN—Ta liner completely to the dielectric layer. In the preferred embodiments, the present invention uses XeF2 selective gas phase etching as alternatives to Ta—TaN Chemical Mechanical Polishing (CMP) as a basic “liner removal process” and as a “selective cap plating base removal process.” In this first use, XeF2 is used to remove the metal liner, TaN—Ta, after copper CMP. In the second use, the XeF2 etch is used to selectively remove a plating base (TaN—Ta) that was used to form a metal cap layer over the copper conductor.
摘要:
This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
摘要:
The present disclosure relates to an integrated wafer processing apparatus for fabricating semiconductor chips. This integrated wafer processing system combines the lithography patterning steps and irradiation curing steps of the patternable dielectric into one system. The patternable low-k material of the present disclosure also functions as a photoresist, i.e. is a photo-patternable low-k dielectric material.
摘要:
Disclosed is a MOSFET structure and method of fabricating the structure that incorporates a multi-layer sidewall spacer to suppress parasitic overlap capacitance between the gate conductor and the source/drain extensions without degrading drive current and, thereby, effecting overall MOSFET performance. In one embodiment, the multi-layer sidewall spacer is formed with a gap layer having a dielectric constant equal to one and a permeable low-K (e.g., less than 3.5) dielectric layer. In another embodiment, the multi-layer sidewall spacer is formed with a first L-shaped dielectric layer having a permittivity value of less than approximately three and a second dielectric layer. Either embodiment may also have a third nitride or oxide spacer layer. This third spacer layer provides increased structural integrity.
摘要:
The present disclosure relates to an integrated wafer processing apparatus for fabricating semiconductor chips. This integrated wafer processing system combines the lithography patterning steps and irradiation curing steps of the patternable dielectric into one system. The patternable low-k material of the present disclosure also functions as a photoresist, i.e. is a photo-patternable low-k dielectric material.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
摘要:
The present invention is directed to a thin film transistor (and related multilayer structures) that includes: source and drain electrodes 14 and 15 disposed at a specified interval above an insulating substrate 11 and formed by printing-and-plating; an a-Si film 16 disposed for the source and drain electrodes 14 and 15; a gate insulating film 17 laminated on the a-Si film 16; and a gate electrode 18 laminated on the gate insulating film 17 and formed by printing-and-plating. The a-Si film 16 and the gate insulating film 17 have an offset region 20 that uniformly extends beyond the dimensions of the gate electrode 18.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.