摘要:
A method of forming a microlens structure is provided along with a CCD array structure employing a microlens array. An embodiment of the method comprises providing a substrate having a surface with photo-elements on the surface; depositing a transparent material overlying the surface of the substrate; depositing a CMP stop overlying the transparent material; depositing a lens-shaping layer overlying the CMP stop layer; depositing and patterning a photoresist layer overlying the lens-shaping layer to form openings to expose the lens-shaping layer; introducing a first isotropic etchant into the openings and etching the lens-shaping layer where exposed to form initial lens shapes having a radius; stripping the photoresist; exposing the lens-shaping layer to a second isotropic etchant to increase the radius of the lens shapes; transferring the lens shape through the CMP stop layer into the transparent material using an anisotropic etch; and depositing a lens material overlying the transparent material, whereby the lens shapes are at least partially filled with lens material. Planarizing the lens material using CMP and stopping at the CMP stop layer.
摘要:
A method for selective ALD of ZnO on a wafer preparing a silicon wafer; patterning the silicon wafer with a blocking agent in selected regions where deposition of ZnO is to be inhibited, wherein the blocking agent is taken from a group of blocking agents includes isopropyl alcohol, acetone and deionized water; depositing a layer of ZnO on the wafer by ALD using diethyl zinc and H2O at a temperature of between about 140° C. to 170° C.; and removing the blocking agent from the wafer.
摘要翻译:在准备硅晶片的晶片上的ZnO的选择性ALD的方法; 在其中要抑制ZnO沉积的选定区域中用封闭剂对硅晶片进行图案化,其中封闭剂取自一组封闭剂,包括异丙醇,丙酮和去离子水; 在约140℃至170℃的温度下,使用二乙基锌和H 2 O 2,通过ALD在晶片上沉积ZnO层。 并从晶片上除去封闭剂。
摘要:
A device and a fabrication method are provided for an EL device with a nanotip-contoured phosphor layer. The method comprises: forming a bottom electrode with nanotips; forming a phosphor layer overlying the bottom electrode, having irregularly-shaped top and bottom surfaces; and, forming a top electrode overlying the phosphor layer. The bottom electrode top surface has a nanotip contour, and the phosphor layer irregularly-shaped top and bottom surfaces have contours approximately matching the bottom electrode top surface nanotip contour. In one aspect, a contoured bottom dielectric is interposed between the bottom electrode and the phosphor layer, having top and bottoms surfaces with contours approximately matching the nanotip contour. Likewise, a top dielectric may be interposed between the top electrode and the phosphor layer, having a bottom surface with a contour approximately matching the contour of phosphor layer top surface.
摘要:
A method of fabricating a MOSFET is provided, including: depositing an oxide layer on a silicon substrate for device isolation; forming a silicon based alloy island above a gate region in the substrate, wherein the silicon based alloy comprises a silicon germanium alloy or a silicon tin alloy or another alloy of Group IV-B elements; building a sidewall about the silicon based alloy island; forming a source region and a drain region in the substrate; removing the silicon based alloy island, thereby leaving a void over the gate region; filing the void and the areas over the source region and the drain region; and planarizing the upper surface of the structure by chemical mechanical polishing. Alternative embodiments providing conventional and raised source/drain structures are disclosed.
摘要:
A method of controlling strain in a single-crystal, epitaxial oxide film, includes preparing a silicon substrate; forming a silicon alloy layer taken from the group of silicon alloy layer consisting of Si1-xGex and Si1-yCy on the silicon substrate; adjusting the lattice constant of the silicon alloy layer by selecting the alloy material content to adjust and to select a type of strain for the silicon alloy layer; depositing a single-crystal, epitaxial oxide film, by atomic layer deposition, taken from the group of oxide films consisting of perovskite manganite materials, single crystal rare-earth oxides and perovskite oxides, not containing manganese; and rare earth binary and ternary oxides, on the silicon alloy layer; and completing a desired device.
摘要翻译:一种控制单晶外延氧化膜中的应变的方法包括制备硅衬底; 从由Si 1-x Ge x Si和Si 1-y C C组成的硅合金层组形成硅合金层 > y sub>; 通过选择合金材料含量来调整硅合金层的晶格常数,并选择一种用于硅合金层的应变; 从由不含锰的钙钛矿亚锰酸盐材料,单晶稀土氧化物和钙钛矿氧化物组成的氧化膜组中,通过原子层沉积法沉积单晶外延氧化膜; 和稀土二元和三元氧化物,在硅合金层上; 并完成所需的设备。
摘要:
A multi-layered barrier metal thin film is deposited on a substrate by atomic layer chemical vapor deposition (ALCVD). The multi-layer film may comprise several different layers of a single chemical species, or several layers each of distinct or alternating chemical species. In a preferred embodiment, the multi-layer barrier thin film comprises a Tantalum Nitride layer on a substrate, with a Titanium Nitride layer deposited thereon. The thickness of the entire multi-layer film may be approximately fifty Angstroms. The film has superior film characteristics, such as anti-diffusion capability, low resistivity, high density, and step coverage, when compared to films deposited by conventional chemical vapor deposition (CVD). The multi-layered barrier metal thin film of the present invention has improved adhesion characteristics and is particularly suited for metallization of a Copper film thereon.
摘要:
A multi-layered barrier metal thin film is deposited on a substrate by atomic layer chemical vapor deposition (ALCVD). The multi-layer film may comprise several different layers of a single chemical species, or several layers each of distinct or alternating chemical species. In a preferred embodiment, the multi-layer barrier thin film comprises a Tantalum Nitride layer on a substrate, with a Titanium Nitride layer deposited thereon. The thickness of the entire multi-layer film may be approximately fifty Angstroms. The film has superior film characteristics, such as anti-diffusion capability, low resistivity, high density, and step coverage, when compared to films deposited by conventional chemical vapor deposition (CVD). The multi-layered barrier metal thin film of the present invention has improved adhesion characteristics and is particularly suited for metallization of a Copper film thereon.
摘要:
A method of fabricating a dual metal gate CMOS includes forming a gate oxide in a gate region and depositing a place-holder gate in each of a n-well and p-well; removing the place-holder gate and gate oxide; depositing a high-k dielectric in the gate region; depositing a first metal in the gate region of the p-well; depositing a second metal in the gate region of each of the n-well and p-well; and insulating and metallizing the structure. A dual metal gate CMOS of the invention includes PMOS transistor and a NMOS transistor. In the NMOS, a gate includes a high-k cup, a first metal cup formed in the high-k cup, and a second metal gate formed in the first metal cup. In the PMOS, a gate includes a high-k cup and a second metal gate formed in the high-k cup.
摘要:
A long wavelength absorbing porphyrin/metalloporphyrin molecule is provided, made up of a porphyrin macrocycle and an anchor group for attachment to a substrate. A molecular linking element is interposed between the porphyrin macrocycle and the anchor group. The porphyrin/metalloporphyrin molecule also includes an (aminophenyl)amine group, either N,N-(4-aminophenyl)amine or N-phenyl-N-(4-aminophenyl)amine, where an amino moiety of the 4-aminophenyl group is derivatized by an element such as hydrogen, haloalkanes, aromatic hydrocarbons, halogenated aromatic hydrocarbons, heteroarenes, halogenated heteroarenes, or combinations of the above-mentioned elements.
摘要:
A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.