摘要:
A device and a fabrication method are provided for an EL device with a nanotip-contoured phosphor layer. The method comprises: forming a bottom electrode with nanotips; forming a phosphor layer overlying the bottom electrode, having irregularly-shaped top and bottom surfaces; and, forming a top electrode overlying the phosphor layer. The bottom electrode top surface has a nanotip contour, and the phosphor layer irregularly-shaped top and bottom surfaces have contours approximately matching the bottom electrode top surface nanotip contour. In one aspect, a contoured bottom dielectric is interposed between the bottom electrode and the phosphor layer, having top and bottoms surfaces with contours approximately matching the nanotip contour. Likewise, a top dielectric may be interposed between the top electrode and the phosphor layer, having a bottom surface with a contour approximately matching the contour of phosphor layer top surface.
摘要:
A method of forming a microlens structure is provided along with a CCD array structure employing a microlens array. An embodiment of the method comprises providing a substrate having a surface with photo-elements on the surface; depositing a transparent material overlying the surface of the substrate; depositing a CMP stop overlying the transparent material; depositing a lens-shaping layer overlying the CMP stop layer; depositing and patterning a photoresist layer overlying the lens-shaping layer to form openings to expose the lens-shaping layer; introducing a first isotropic etchant into the openings and etching the lens-shaping layer where exposed to form initial lens shapes having a radius; stripping the photoresist; exposing the lens-shaping layer to a second isotropic etchant to increase the radius of the lens shapes; transferring the lens shape through the CMP stop layer into the transparent material using an anisotropic etch; and depositing a lens material overlying the transparent material, whereby the lens shapes are at least partially filled with lens material. Planarizing the lens material using CMP and stopping at the CMP stop layer.
摘要:
A method for selective ALD of ZnO on a wafer preparing a silicon wafer; patterning the silicon wafer with a blocking agent in selected regions where deposition of ZnO is to be inhibited, wherein the blocking agent is taken from a group of blocking agents includes isopropyl alcohol, acetone and deionized water; depositing a layer of ZnO on the wafer by ALD using diethyl zinc and H2O at a temperature of between about 140° C. to 170° C.; and removing the blocking agent from the wafer.
摘要翻译:在准备硅晶片的晶片上的ZnO的选择性ALD的方法; 在其中要抑制ZnO沉积的选定区域中用封闭剂对硅晶片进行图案化,其中封闭剂取自一组封闭剂,包括异丙醇,丙酮和去离子水; 在约140℃至170℃的温度下,使用二乙基锌和H 2 O 2,通过ALD在晶片上沉积ZnO层。 并从晶片上除去封闭剂。
摘要:
A dual-gate MOSFET with metal gates and a method for setting threshold voltage in such a MOSFET is provided. The method comprises: forming a gate oxide layer overlying first and second channel regions; forming a first metal layer having a first thickness overlying the gate oxide layer; forming a second metal layer having a second thickness overlying the first metal layer first thickness; selectively removing the second metal layer overlying the first channel region; forming a third metal layer; establishing a first MOSFET with a gate work function responsive to the thicknesses of the first and third metal layer overlying the first channel region; and, establishing a second MOSFET, complementary to the first MOSFET, with a gate work function responsive to the combination of the thicknesses of the first, second, and third metal layers overlying the second channel region.
摘要:
A method, and corresponding transistor structure are provided for protecting the gate electrode from an underlying gate insulator. The method comprises: forming a gate insulator overlying a channel region; forming a first metal barrier overlying the gate insulator, having a thickness of less than 5 nanometers (nm); forming a second metal gate electrode overlying the first metal barrier, having a thickness of greater than 10 nm; and, establishing a gate electrode work function exclusively responsive to the second metal. The second metal gate electrode can be one of the following materials: elementary metals such as p+ poly, n+ poly. Ta, W, Re, RuO2, Pt, Ti, Hf, Zr, Cu, V, Ir, Ni, Mn, Co, NbO, Pd, Mo, TaSiN, and Nb, and binary metals such as WN, TaN, and TiN. The first metal barrier can be a binary metal, such as TaN, TiN, or WN.
摘要:
A method is provided for forming an electroluminescent device. The method comprises: providing a type IV semiconductor material substrate; forming a p+/n+ junction in the substrate, typically a plurality of interleaved p+/n+ junctions are formed; and, forming an electroluminescent layer overlying the p+/n+ junction(s) in the substrate. The type IV semiconductor material substrate can be Si, C, Ge, SiGe, or SiC. For example, the substrate can be Si on insulator (SOI), bulk Si, Si on glass, or Si on plastic. The electroluminescent layer can be a material such as nanocrystalline Si, nanocrystalline Ge, fluorescent polymers, or type II–VI materials such as ZnO, ZnS, ZnSe, CdSe, and CdS. In some aspect, the method further comprises forming an insulator film interposed between the substrate and the electroluminescent layer. In another aspect, the method comprises forming a conductive electrode overlying the electroluminescent layer.
摘要翻译:提供了形成电致发光器件的方法。 该方法包括:提供IV型半导体材料基板; 在衬底中形成p + / n +结,通常形成多个交错的p + / n +结; 并且形成覆盖衬底中的p + / n +结的电致发光层。 IV型半导体材料基板可以是Si,C,Ge,SiGe或SiC。 例如,衬底可以是绝缘体上的硅(SOI),玻璃上的体积Si,Si或塑料上的Si。 电致发光层可以是诸如纳米晶体Si,纳米晶体Ge,荧光聚合物或诸如ZnO,ZnS,ZnSe,CdSe和CdS的II-VI族材料的材料。 在一些方面,所述方法还包括形成介于基片和电致发光层之间的绝缘膜。 另一方面,该方法包括形成覆盖电致发光层的导电电极。
摘要:
A ZnO asperity-covered carbon nanotube (CNT) device has been provided, along with a corresponding fabrication method. The method comprises: forming a substrate; growing CNTs from the substrate; conformally coating the CNTs with ZnO; annealing the ZnO-coated CNTs; and, forming ZnO asperities on the surface of the CNTs in response to the annealing. In one aspect, the ZnO asperities have a density in the range of about 100 to 1000 ZnO asperities per CNT. The density is dependent upon the deposited ZnO film thickness and annealing parameters. The CNTs are conformally coating with ZnO using a sputtering, chemical vapor deposition (CVD), spin-on, or atomic layer deposition (ALD). For example, an ALD process can be to deposit a layer of ZnO over the CNTs having a thickness in the range of 1.2 to 200 nanometers (nm).
摘要:
A ZnO film with a C-axis preference is provided with a corresponding fabrication method. The method includes: forming a substrate; forming an amorphous Al2O3 film overlying the substrate; and, forming a ZnO film overlying the Al2O3 film at a substrate temperature of about 170° C., having a C-axis preference responsive to the adjacent Al2O3 film. The substrate can be a material such as Silicon (Si) (100), Si (111), Si (110), quartz, glass, plastic, or zirconia. The Al2O3 film can be deposited using a chemical vapor deposition (CVD), atomic layer deposition (ALD), or sputtering process. Typically, the Al2O3 layer has a thickness in the range of about 3 to 15 nanometers (nm). The step of forming the ZnO film having a C-axis preference typically means that the ZnO film has a (002) peak at least 5 times greater than the (100) peak, as measured by X-ray diffraction (XRD).
摘要翻译:具有C轴偏好的ZnO膜具有相应的制造方法。 该方法包括:形成衬底; 在衬底上形成非晶Al2O3膜; 并且在约170℃的衬底温度下形成覆盖Al 2 O 3膜的ZnO膜,具有响应于相邻Al 2 O 3膜的C轴偏好。 衬底可以是诸如硅(Si)(100),Si(111),Si(110),石英,玻璃,塑料或氧化锆的材料。 可以使用化学气相沉积(CVD),原子层沉积(ALD)或溅射工艺来沉积Al 2 O 3膜。 通常,Al 2 O 3层的厚度在约3至15纳米(nm)的范围内。 形成具有C轴偏好的ZnO膜的步骤通常意味着通过X射线衍射(XRD)测量,ZnO膜具有比(100)峰的至少5倍的(002)峰。
摘要:
A method of fabricating a nanowire CHEMFET sensor mechanism includes preparing a silicon substrate; depositing a polycrystalline ZnO seed layer on the silicon substrate; patterning and etching the polycrystalline ZnO seed layer; depositing an insulating layer over the polycrystalline ZnO seed layer and the silicon substrate; patterning and etching the insulating layer to form contact holes to a source region and a drain region; metallizing the contact holes to form contacts for the source region and the drain region; depositing a passivation dielectric layer over the insulating layer and the contacts; patterning the passivation layer and etching to expose the polycrystalline ZnO seed layer between the source region and the drain region; and growing ZnO nanostructures on the exposed ZnO seed layer to form a ZnO nanostructure CHEMFET sensor device.
摘要:
A method of forming a layer of high-&kgr; dielectric material in an integrated circuit includes preparing a silicon substrate; depositing a first layer of metal oxide using ALD with a metal nitrate precursor; depositing another layer of metal oxide using ALD with a metal chloride precursor; and completing the integrated circuit.