摘要:
A method and apparatus for determining the progress of a disease. A pre-determined vector space is determined where the vector space mathematically describes a reference set of wavelength resolved data at a plurality of time intervals. A sample containing at least one cell is irradiated with light. Target data is collected where the target data corresponds to at least one of light emitted from or scattered by the sample and includes a plurality of spatially accurate wavelength resolved measurements of light. The target data is transformed into the pre-determined vector space for each spatially accurate wavelength resolved measurement of light. A distribution of transformed points is analyzed in the plurality of pre-determined vector space. Based on the analysis, a transition of a disease condition of the sample is classified.
摘要:
The disclosure relates to a portable system having a fiber array spectral translator (“FAST”) for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
摘要:
The embodiments disclosed herein generally relate to identifying and removing background noise in spectroscopic imaging of a sample. Because white-light has essentially constant intensity at every wavelength, background noise caused by white light can be identified and removed from spectroscopic measurements including Raman spectroscopy. Thus, once the Raman spectrum for a sample is obtained, it may be corrected to remove the white-light dispersive spectrum in accordance with the embodiments disclosed herein.
摘要:
The disclosure relates to methods and apparatus for assessing occurrence of one or more hazardous agents in a sample by performing multipoint spectral analysis of the sample using a portable or hand-held device. Methods of employing Raman spectroscopy and other spectrophotometric methods are disclosed. Devices and systems suitable for performing such multipoint methods are also disclosed.
摘要:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
摘要:
The invention relates to methods and devices for assessing one or more blood components in an animal. The present invention permits non-invasive assessment of blood components in a body structure containing blood and other tissue types by assessing multiple regions of a tissue surface for an optical characteristic of blood and separately assessing one or more optical (e.g., Raman or NIR) characteristics of the blood component for one or more regions that exhibit the optical characteristic of blood.
摘要:
The disclosure relates to Method and Apparatus for Super Montage Large area Spectroscopic Imaging. In one embodiment of the disclosure, a method for producing a spectroscopic image of an object includes the steps of (a) irradiating the object with light to thereby produce from the object scattered and/or emitted light for each of a plurality of wavelengths; (b) producing separately for each of the plurality of wavelengths a plurality of substantially contiguous sub-images of the object; (c) compensating for spatial aberrations in ones of the sub-images for a select one of the plurality of wavelengths; (d) compensating for intensity aberrations between ones of the substantially contiguous sub-images for one of the plurality of wavelengths; and (e) combining the sub-images for the select one wavelength to thereby produce said spectroscopic image of the object.
摘要:
A system and method to distinguish normal cells from apoptotic cells. A pre-determined vector space is selected where the vector space mathematically describes a first plurality of reference Raman data sets for normal cells and a second plurality of reference Raman data sets for apoptotic cells. A sample is irradiated with substantially monochromatic light generating a target Raman data set based on scattered photons. The target Raman data set is transformed into a vector space defined by the pre-determined vector space. A distribution of transformed data is analyzed in the pre-determined vector space. Based on the analysis, the sample is classified as containing normal cells, apoptotic cells, and a combination of normal and apoptotic cells. The sample includes the step of treating the sample with a pharmaceutical agent prior to irradiating the sample. Based on the classification, the therapeutic efficiency of the pharmaceutical agent is assessed.
摘要:
A system and method to distinguish normal cells from cells having undergone a biochemical change. A pre-determined vector space is selected where the vector space mathematically describes a first plurality of reference spectral data sets for normal cells and a second plurality of reference spectral data sets for cells having undergone a biochemical change. A sample is irradiated to generate a target spectral data set based on photons absorbed, reflected, emitted, or scattered by the sample. The target spectral data set is transformed into a pre-determined vector space. A distribution of transformed data is analyzed in the pre-determined vector space. Based on the analysis, the sample is classified as containing normal cells, cells having undergone a biochemical change, and combinations thereof. The method includes treating the sample with a pharmaceutical agent prior to irradiating the sample and using the classification to assess the efficiency of the pharmaceutical agent.
摘要:
A system and method to distinguish normal cells from apoptotic cells. A pre-determined vector space is selected where the vector space mathematically describes a first plurality of reference Raman data sets for normal cells and a second plurality of reference Raman data sets for apoptotic cells. A sample is irradiated with substantially monochromatic light generating a target Raman data set based on scattered photons. The target Raman data set is transformed into a vector space defined by the pre-determined vector space. A distribution of transformed data is analyzed in the pre-determined vector space. Based on the analysis, the sample is classified as containing normal cells, apoptotic cells, and a combination of normal and apoptotic cells. The sample includes the step of treating the sample with a pharmaceutical agent prior to irradiating the sample. Based on the classification, the therapeutic efficiency of the pharmaceutical agent is assessed.