摘要:
An optical channel monitor is provided that sequentially or selectively filters an optical channel(s) 11 of light from a (WDM) optical input signal 12 and senses predetermined parameters of the each filtered optical signal (e.g., channel power, channel presence, signal-noise-ratio). The OCM 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates spatially each of the optical channels 11 of the collimated light, and reflects the separated channels of light onto the mirror 22. A λ/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the λ/4 plate 26 to the diffraction grating 20, which reflects the channels of light back through the collimating lens 18. The lens 18 focuses each separated channel of light (λ1-λN) at a different focal point in space. One of the optical channels 11 is focused onto a receive pigtail 28, which then propagates to a photodetector 30. A pivoting mechanism 34 pivots the diffraction grating 20 or mirror 22 about a pivot point 36 to sequentially or selectively focus each optical channel 11 to the receive pigtail 28. A position sensor 42 detects the displacement of the diffraction grating 24 or mirror.
摘要:
An dynamic optical filter 10 is provided to selectively attenuate or filter a wavelength band(s) of light (i.e., optical channel(s)) or a group(s) of wavelength bands of an optical WDM input signal 12. The optical filter is controllable or programmable to selectively provide a desired filter function. The optical filter 10 includes a spatial light modulator 36, which comprises an array of micromirrors 52 that effectively forms a two-dimensional diffraction grating mounted in a retro-reflecting configuration. Each optical channel 14 is dispersed separately or overlappingly onto the array of micro-mirrors 52 along a spectral axis or direction 55 such that each optical channel or group of optical channels are spread over a plurality of micromirrors to effectively pixelate each of the optical channels or input signal. Each channel 14 or group of channels may be selectively attenuated by flipping or tilting a selected number of micromirrors to thereby deflect a portion of the incident radiation away from the return optical path. The micro-mirrors operate in a digital manner by flipping between a first and second position in response to a control signal 56 provided by a controller 58 in accordance with an attenuation algorithm and an input command 60. The switching algorithm may provide a bit (or pixel) map or look-up table indicative of the state of each of the micro-mirrors 52 of the array to selectively attenuate the input signal and provide a modified output signal 38 at optical fiber 40.
摘要:
A method and apparatus are provided for aligning optical elements or microbeads, wherein each microbead has an elongated body with a code embedded therein along a longitudinal axis thereof to be read by a code reading device. The microbeads are aligned with a positioning device so the longitudinal axis of the microbeads is positioned in a fixed orientation relative to the code reading device. The microbeads are typically cylindrically shaped glass beads between 25 and 250 microns (μm) in diameter and between 100 and 500 μm long, and have a holographic code embedded in the central region of the bead, which is used to identify it from the rest of the beads in a batch of beads with many different chemical probes. A cross reference is used to determine which probe is attached to which bead, thus allowing the researcher to correlate the chemical content on each bead with the measured fluorescence signal. Because the code consists of a diffraction grating typically disposed along an axis, there is a particular alignment required between the incident readout laser beam and the readout detector in two of the three rotational axes. The third axis, rotation about the center axis of the cylinder, is azimuthally symmetric and therefore does not require alignment.
摘要:
An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.