摘要:
A method is provided for forming a metal interconnection using a plating process, which can improve the throughput and reliability of semiconductor devices by decreasing the required polishing in a chemical mechanical polishing process. A semiconductor device manufactured by this method is also provided. In the method of forming a metal interconnection, a recess region is formed in a portion of an insulation layer formed over a substrate, i.e., where a metal interconnection layer will be formed. A diffusion prevention layer is formed over the substrate, the insulation layer, and the recess region. Then, a metal seed layer is formed over the diffusion prevention layer only in the recess region using a chemical mechanical polishing process or an etch back process. A conductive plating layer is then formed on the metal seed layer only in the recess region. Thereafter, surface polarization is performed to form a metal interconnection layer in the recess region. The plating layer may be formed after forming the seed layer only in the bottom portion of the recess region.
摘要:
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
摘要:
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
摘要:
A chemical mechanical polishing slurry includes an additive of a quaternary ammonium compound having a form of {N—(R1R2R3R4)}+X−, in which R1, R2, R3, and R4 are radicals, and X− is an anion derivative including halogen elements. Preferably, the quaternary ammonium compound is one of [(CH3)3NCH2CH2OH]Cl, [(CH3)3NCH2CH2OH]l, [(CH3)3NCH2CH2OH]Br, [(CH3)3NCH2CH2OH]CO3, and mixtures thereof. The slurry may further include a pH control agent formed of a base such as KOH, NH4OH, and (CH3)4NOH, and an acid such as HCl, H2SO4, H3PO4, and HNO3. Also, the pH control agent can include [(CH3)3NCH2CH2OH]OH. The slurry may further include a surfactant such as cetyldimethyl ammonium bromide, cetyldimethyl ammonium bromide, polyethylene oxide, polyethylene alcohol or polyethylene glycol.
摘要:
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
摘要:
A CMP oxide slurry includes an aqueous solution containing abrasive particles and two or more different passivation agents. Preferably, the aqueous solution is made up of deionized water, and the abrasive particles are a metal oxide selected from the group consisting of ceria, silica, alumina, titania, zirconia and germania. Also, a first passivation agent may be an anionic, cationic or nonionic surfactant, and a second passivation agent may be a phthalic acid and its salts. In one example, the first passivation agent is poly-vinyl sulfonic acid, and the second passivation agent is potassium hydrogen phthalate. The slurry exhibits a high oxide to silicon nitride removal selectivity.
摘要:
A polishing slurry including an abrasive, deionized water, a pH controlling agent, and polyethylene imine, can control the removal rates of a silicon oxide layer and a silicon nitride layer which are simultaneously exposed during chemical mechanical polishing (CMP) of a conductive layer. A relative ratio of the removal rate of the silicon oxide layer to that of the silicon nitride layer can be controlled by controlling an amount of the choline derivative.
摘要:
A gate electrode conductive layer is formed on an active region that is recessed relative to field oxide layers so as to define a damascene structure. The gate electrode conductive layer is formed on the active region but is not formed on a field region so that the thickness of an interlayer insulation layer deposited in a succeeding process is reduced, thereby reducing or preventing voids within the interlayer insulation layer. A polysilicon is formed on the bottom of the active region by selective epitaxial growth, thereby minimizing the influence of micro scratches, pits or stringers occurring on the bottom of the active region.
摘要:
A polishing slurry including an abrasive, deionized water, a pH controlling agent, and polyethylene imine, can control the removal rates of a silicon oxide layer and a silicon nitride layer which are simultaneously exposed during chemical mechanical polishing (CMP) of a conductive layer. A relative ratio of the removal rate of the silicon oxide layer to that of the silicon nitride layer can be controlled by controlling an amount of the choline derivative.
摘要:
An insulating layer can be formed on first and second adjacent regions of an integrated circuit having a first step difference therebetween, the first and second regions having first and second respective etch rates associated therewith. A recess can be formed in the insulating layer on the second region having a second step difference with the first region that is less than the first step difference to provide a portion of the insulating layer between the first and second adjacent regions having a third step difference with the first region that is greater than the second step difference. A width of the portion is selected based on a difference between the first and second etch rates.