摘要:
A system and method of automatically detecting failure patterns for a semiconductor wafer process is provided. The method includes receiving a test data set collected from testing a plurality of semiconductor wafers, forming a respective wafer map for each of the wafers, determining whether each respective wafer map comprises one or more respective objects, selecting the wafer maps that are determined to comprise one or more respective objects, selecting one or more object indices for selecting a respective object in each respective selected wafer map, determining a plurality of object index values in each respective selected wafer map, selecting an object in each respective selected wafer map, determining a respective feature in each of the respective selected wafer, classifying a respective pattern for each of the respective selected wafer maps and using the respective wafer fingerprints to adjust one or more parameters of the semiconductor fabrication process.
摘要:
System and method for data mining and feature tracking for fab-wide prediction and control are described. One embodiment is a system comprising a database for storing raw wafer manufacturing data; a data mining module for processing the raw wafer manufacturing data to select the best data therefrom in accordance with at least one of a plurality of knowledge-, statistic-, and effect-based processes; and a feature tracking module associated with the data mining module and comprising a self-learning model wherein a sensitivity of the self-learning model is dynamically tuned to meet real-time production circumstances, the feature tracking module receiving the selected data from the data mining module and generating prediction and control data therefrom; wherein the prediction and control data are used to control future processes in the wafer fabrication facility.
摘要:
System and method for data mining and feature tracking for fab-wide prediction and control are described. One embodiment is a system comprising a database for storing raw wafer manufacturing data; a data mining module for processing the raw wafer manufacturing data to select the best data therefrom in accordance with at least one of a plurality of knowledge-, statistic-, and effect-based processes; and a feature tracking module associated with the data mining module and comprising a self-learning model wherein a sensitivity of the self-learning model is dynamically tuned to meet real-time production circumstances, the feature tracking module receiving the selected data from the data mining module and generating prediction and control data therefrom; wherein the prediction and control data are used to control future processes in the wafer fabrication facility.
摘要:
A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
摘要:
A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
摘要:
A system and method for manufacturing semiconductor devices is disclosed. An embodiment comprises using desired device parameters to choose an initial manufacturing recipe. Once chosen, the initial manufacturing recipe may be modified by determining and applying an offset adjustment based on previous manufacturing to tune the recipes for the particular equipment to be utilized in the manufacturing process.
摘要:
A method for providing a bin ratio forecast at an early stage of integrated circuit device manufacturing processes is disclosed. The method comprises collecting historical data from one or more processed wafer lots; collect measurement data from one or more skew wafer lots; generating an estimated baseline distribution from the collected historical data and collected measurement data; generating an estimated performance distribution based on one or more specified parameters and the generated estimated baseline distribution; determining a bin ratio forecast by applying a bin definition and a yield degradation factor estimation to the generated estimated performance distribution; determining one or more production targets based on the bin ratio forecast; and processing one or more wafers based on the one or more determined production targets.
摘要:
A method for providing a bin ratio forecast at an early stage of integrated circuit device manufacturing processes is disclosed. The method comprises collecting historical data from one or more processed wafer lots; collect measurement data from one or more skew wafer lots; generating an estimated baseline distribution from the collected historical data and collected measurement data; generating an estimated performance distribution based on one or more specified parameters and the generated estimated baseline distribution; determining a bin ratio forecast by applying a bin definition and a yield degradation factor estimation to the generated estimated performance distribution; determining one or more production targets based on the bin ratio forecast; and processing one or more wafers based on the one or more determined production targets.
摘要:
A system and method for manufacturing semiconductor devices is disclosed. An embodiment comprises using desired device parameters to choose an initial manufacturing recipe. Once chosen, the initial manufacturing recipe may be modified by determining and applying an offset adjustment based on previous manufacturing to tune the recipes for the particular equipment to be utilized in the manufacturing process.