摘要:
Provided is a method of manufacturing a V2O3 thin film having an abrupt MIT characteristic. The method forms a thin film of one of VO2 and V3O7 on a substrate. Then the substrate on which thin film is formed is mounted in a chamber in which a reduction atmosphere capable of removing oxygen is formed, and annealed to form a V2O3 thin film having an abrupt MIT.
摘要翻译:提供了具有突变MIT特性的V2O3薄膜的制造方法。 该方法在衬底上形成VO2和V3O7之一的薄膜。 然后将形成有薄膜的基板安装在其中形成能够除去氧的还原气氛的室中,并退火以形成具有突变MIT的V 2 O 3薄膜。
摘要:
Provided is a logic circuit comprising a metal-insulator transition (MIT) device, including: an MIT device unit including an MIT thin film, an electrode thin film contacting the MIT thin film, and at least one MIT device undergoing a discontinuous MIT at a transition voltage VT; a power source unit including at least one power source applying power to the MIT device; and at least one resistor connected to the MIT device, wherein a logic operation is performed on a signal through the power source to output the result of the logic operation as an output signal.
摘要:
Provided are an antireflection film of a solar cell, the solar cell, and a method of manufacturing the solar cell. The antireflection film of a solar cell includes a low dielectric film formed of a material having a first dielectric constant; a high dielectric film formed of a material having a second dielectric constant higher than the first dielectric constant; and a gradient layer disposed between the low dielectric film and the high dielectric film, and formed so as to gradually increase a dielectric constant from the first dielectric constant to the second dielectric constant. According to the present invention, light absorption efficiency of a solar cell can be increased.
摘要:
Provided is an electro-luminescent device (ELD) including a metal-insulator transition (MIT) layer. The ELD includes: a substrate; a EL phosphor layer positioned on the substrate and comprising luminescent center ions generating light; the MIT layer disposed on a surface of the EL phosphor layer and being abruptly changed from an insulator to a metal according to a variation of a voltage; a first insulator adhered to the MIT layer to distribute a voltage applied from an external source; and a second insulator disposed on the other side of the EL phosphor layer.
摘要:
Provided is a voltage regulation system using an abrupt metal-insulator transition (MIT), which can regulate various zener voltages and can be easily manufactured. The voltage regulation system includes: an input power source: a series resistor connected in series to the input power source; and an MIT insulator connected in series to the series resistor, and undergoing an abrupt MIT such that the range of an output voltage regulated to be kept constant varies according to the resistance of the series resistor.
摘要:
Provided are an abrupt MIT device with variable MIT temperature or voltage, an MIT sensor using the abrupt MIT device, and an alarm apparatus and a secondary battery anti-explosion circuit including the MIT sensor. The MIT device includes an abrupt MIT layer undergoing an abrupt MIT at a transition temperature or a transition voltage and at least two electrode layers contacting the abrupt MIT layer. The transition temperature or the transition voltage varies with at least one of factors including a voltage applied to the electrode layers, a temperature, an electromagnetic wave, a pressure, and a gas concentration that affect the abrupt MIT layer. The MIT sensor is a temperature sensor, an infrared sensor, an image sensor, a pressure sensor, a gas-concentration sensor, or a switch. The alarm apparatus includes the MIT sensor and an alarm-signaling unit connected in series with the MIT sensor. The secondary battery anti-explosion circuit includes a secondary battery, the MIT sensor attached to the secondary battery to sense the temperature of the secondary battery and thus to prevent the possible explosion of the secondary battery, and a protection circuit body powered by the secondary battery.
摘要:
Provided is an electro-luminescent device (ELD) including a metal-insulator transition (MIT) layer. The ELD includes: a substrate; a EL phosphor layer positioned on the substrate and comprising luminescent center ions generating light; the MIT layer disposed on a surface of the EL phosphor layer and being abruptly changed from an insulator to a metal according to a variation of a voltage; a first insulator adhered to the MIT layer to distribute a voltage applied from an external source; and a second insulator disposed on the other side of the EL phosphor layer.
摘要:
Provided is a logic circuit comprising a metal-insulator transition (MIT) device, including: an MIT device unit including an MIT thin film, an electrode thin film contacting the MIT thin film, and at least one MIT device undergoing a discontinuous MIT at a transition voltage VT; a power source unit including at least one power source applying power to the MIT device; and at least one resistor connected to the MIT device, wherein a logic operation is performed on a signal through the power source to output the result of the logic operation as an output signal.
摘要:
Provided are an abrupt MIT device with variable MIT temperature or voltage, an MIT sensor using the abrupt MIT device, and an alarm apparatus and a secondary battery anti-explosion circuit including the MIT sensor The MIT device includes an abrupt MIT layer undergoing an abrupt MIT at a transition temperature or a transition voltage and at least two electrode layers contacting the abrupt MIT layer. The transition temperature or the transition voltage varies with at least one of factors including a voltage applied to the electrode layers, a temperature, an electromagnetic wave, a pressure, and a gas concentration that affect the abrupt MIT layer. The MIT sensor is a temperature sensor, an infrared sensor, an image sensor, a pressure sensor, a gas-concentration sensor, or a switch. The alarm apparatus includes the MIT sensor and an alarm-signaling unit connected in series with the MIT sensor. The secondary battery anti-explosion circuit includes a secondary battery, the MIT sensor attached to the secondary battery to sense the temperature of the secondary battery and thus to prevent the possible explosion of the secondary battery, and a protection circuit body powered by the secondary battery.
摘要:
Provided are a method for antireflection treatment of a zinc oxide film and a method for manufacturing a solar cell using the same. In the anti-reflection treatment, a substrate is prepared, then a polycrystalline zinc oxide film is formed on the substrate. A surface of the polycrystalline zinc oxide film is textured. Here, the roughening of the surface of the polycrystalline zinc oxide film comprises wet-etching the polycrystalline zinc oxide film on the substrate using an etching solution mixed with nitric acid and hydrogen peroxide.