摘要:
The invention provides Al2O3 dispersion-strengthened Ti2AlN composites, wherein Ti2AlN matrix and Al2O3 strengthening phase both are reactively formed in situ. The volume fraction of Al2O3 is 5% to 50%; the particle size of Al2O3 ranges from 500 nm to 2 μm, with the mean size of Al2O3 particles about 0.8 μm to 1.2 μm; the shape of Ti2AlN grain is plate-like about 80 nm to 120 nm thick and 0.5 μm to 2 μm long. The composites exhibit excellent deformability at high temperature under compression and flexure stresses, and possess excellent oxidation resistance at 1100° C. to 1350° C. for long time (100 h). The composites show typical metallic conductor behavior and the electrical resistivity at room temperature is 0.3 to 0.8 μΩ·m. The invention also provides a method for preparing the same: First, nanoparticles in Ti—Al binary system were prepared in continuous way by hydrogen plasma-metal reaction (HPMR) using Ti—Al alloy rods with Al content 20% to 60% by atom, or pure Al rods and pure Ti rods. The atmosphere used in HPMR is the mixture atmosphere of nitrogen-containing gas, H2 and Ar, with total pressure of 0.8 to 1.2 atm, wherein volume ratio of H2 and Ar is 1:0.8-1.2, and volume fraction of nitrogen-containing gas is 0 to about 20%. Second, the nanoparticles were compacted by vacuum hot pressing at temperature of 800° C. to 1200° C., pressure of 40 MPa to 60 MPa, time of 4 h to 6 h, and vacuum of 2×10−2 Pa to 5×10−3 Pa.
摘要翻译:本发明提供了Al 2 N 3 O 3分散强化Ti 2 AlN复合材料,其中Ti 2 AlN基体和Al 2N 3 O 3强化相都在原位反应形成。 Al 2 O 3 3的体积分数为5%至50%; Al 2 O 3 3的颗粒尺寸范围为500nm至2μm,平均尺寸为Al 2 O 3 3 < / SUB颗粒约0.8〜1.2μm; Ti 2 AlN晶粒的形状是板状,约80nm至120nm厚,0.5μm至2μm长。 复合材料在压缩和挠曲应力下在高温下表现出优异的变形性,并且在1100℃至1350℃长时间(100小时)下具有优异的抗氧化性。 复合材料表现出典型的金属导体性能,室温下的电阻率为0.3〜0.8 muOmega.m。 本发明还提供了一种制备方法:首先,使用Al含量为20〜60原子%的Ti-Al合金棒,通过氢等离子体 - 金属反应(HPMR)连续制备Ti-Al二元体系中的纳米粒子 ,或纯Al棒和纯Ti棒。 HPMR中使用的气氛是含氮气体H 2 2和Ar的混合气氛,总压力为0.8至1.2atm,其中H 2 2和 Ar为1:0.8-1.2,含氮气体的体积分数为0〜20%。 第二,通过真空热压在800℃至1200℃,40MPa至60MPa的压力,4小时至6小时的时间和2×10 -2真空的压力下压制纳米颗粒, SUP> Pa至5×10 -3 Pa。
摘要:
The invention provides Al2O3 dispersion-strengthened Ti2AlN composites, wherein Ti2AlN matrix and Al2O3 strengthening phase both are reactively formed in situ. The volume fraction of Al2O3 is 5% to 50%; the particle size of Al2O3 ranges from 500 nm to 2 μm, with the mean size of Al2O3 particles about 0.8 μm to 1.2 μm; the shape of Ti2AlN grain is plate-like about 80 nm to 120 nm thick and 0.5 μm to 2 μm long. The composites exhibit excellent deformability at high temperature under compression and flexure stresses, and possess excellent oxidation resistance at 1100° C. to 1350° C. for long time (100 h). The composites show typical metallic conductor behavior and the electrical resistivity at room temperature is 0.3 to 0.8 μΩ·m. The invention also provides a method for preparing the same: First, nanoparticles in Ti—Al binary system were prepared in continuous way by hydrogen plasma-metal reaction (HPMR) using Ti—Al alloy rods with Al content 20% to 60% by atom, or pure Al rods and pure Ti rods. The atmosphere used in HPMR is the mixture atmosphere of nitrogen-containing gas, H2 and Ar, with total pressure of 0.8 to 1.2 atm, wherein volume ratio of H2 and Ar is 1:0.8-1.2, and volume fraction of nitrogen-containing gas is 0 to about 20%. Second, the nanoparticles were compacted by vacuum hot pressing at temperature of 800° C. to 1200° C., pressure of 40 MPa to 60 MPa, time of 4 h to 6 h, and vacuum of 2×10−2 Pa to 5×10−3 Pa.
摘要:
A composite diode (100) includes a first conductive sheet, (110) a second conductive sheet, (120) and a nonlinear polymer composite material (130) sandwiched therebetween. The nonlinear polymer composite material comprises nonlinear inorganic particles (150) retained in a polymeric binder material (140). Methods of making the composite diode, and electronic devices including them, are also disclosed.
摘要:
A method for compensating for a wavelength shift in a wavelength selective switch (WSS), and a device therefor. The device comprises a fixed seat (301) as well as a rotation beam (304) and a compensation block (302) that have different thermal expansion amounts, the rotation beam (304) and the compensation block (302) being fixedly adhered to the fixed seat (301). In the method, a combined structure of the rotation beam (304) and the compensation block (302) with different thermal expansion amounts is adopted; the combined structure rotates by means of different expansion amounts generated by the rotation beam (304) and the compensation block (302) at the same external temperature, and further drives an optical element of the WSS to rotate, hence compensating for a wavelength shift of the WSS. The method is safe and reliable; the device has a simple structure, and is convenient to encapsulate, is applicable to various WSS optical paths, and does not affect advantages of the optical path structure of the WSS.
摘要:
Described herein are methods to enable wireless cellular operation in unlicensed and lightly licensed, (collectively referred to as license exempt spectrum. Cognitive methods are used to enable use of unlicensed bands and/or secondary use of lightly licensed bands. Wireless devices may use licensed exempt spectrum as new bands in addition to the existing bands to transmit to a wireless transmit/receive unit (WTRU) in the downlink direction, or to a base station in the uplink direction. The wireless devices may access license exempt spectrum for bandwidth aggregation or relaying using a carrier aggregation framework. In particular, a primary component carrier operating in a licensed spectrum is used for control and connection establishment and a second component carrier operating in a licensed exempt spectrum is used for bandwidth extension.
摘要:
A method of decoding enhanced uplink absolute grant channel (E-AGCH) transmissions in a wireless transmit/receive unit (WTRU). E-AGCH data is received, the E-AGCH data including a cyclic redundancy check (CRC) part and a data part, the CRC part having been masked with a WTRU identity (ID). The CRC part and the data part are demultiplexed and the CRC part is demasked with a first WTRU ID. A first CRC is performed with the data part and the CRC part demasked with the first WTRU ID. The data part is decoded on a condition that the first CRC passes.
摘要:
Two network nodes may exchange messages through a relay using physical-layer network coding combined with forward error correction coding (FEC). The relay determines a prime field order based on the channel condition and communicates the field order to the network nodes. Each network node encodes an outgoing message with linear codes over a field such as finite field of the field order, and transmits a signal carrying the encoded outgoing message. The relay receives a composite signal carrying the summation of the messages from the two network nodes. The relay decodes the composite signal and extracts a composite message with linear codes over finite field of field order, and broadcasts a signal carrying the composite message. Each network node receives the signal from the relay and extracts the message intended for it using linear subtraction over finite field of field order.
摘要:
An apparatus for improving transmission bandwidth is provided in the embodiments of the present disclosure, which includes: a signal transmission line, side grounds located at two sides of the signal transmission line, and a capacitor disposed between the signal transmission line and the side grounds. The signal transmission line comprises a microstrip line, and the signal transmission line and the side grounds form a coplanar waveguide transmission line together. On a transmission channel connected through a bonding wire, a capacitor is disposed between a signal transmission line and side grounds. An inductor-capacitor (LC) resonance circuit is formed by using inductance characteristics presented by the bonding wire and the capacitor connected in parallel with the bonding wire, and a resonance point is formed within a frequency band in a frequency domain.
摘要:
An adaptive equalizer including an equalizer filter and a tap coefficients generator used to process a sample data stream derived from a plurality of received signals is disclosed. The tap coefficients generator includes an equalizer tap update unit, a vector norm square estimator, an active taps mask generator, a switch and a pilot amplitude reference unit used to minimize the dynamic range of the equalizer filter. A dynamic mask vector is used to mask active taps generated by the equalizer tap update unit when an unmasked signal output by the equalizer filter is selected by the switch to generate an error signal fed to the equalizer tap update unit. A fixed mask vector is used to mask active taps generated by the equalizer tap update unit when a masked signal output by the equalizer filter is used to generate the error signal.
摘要:
A two-way relay wireless communication method and device may combine multiple bit steams, for one source node and two target nodes, and broadcasting a network coded combined bit sequence to reduce the number of time slots for transmission. A first device may receive a signal from the source node and a target node simultaneously in a time slot. The first device may receive subsequent signals from the source node and multiple target nodes simultaneously in successive time slots. Hierarchical modulation may be applied to the received signals. The first device may decode the received signals and generate a plurality of intermediate bit sequences (IBS)s for a broadcast transmission. The generated IBSs may be grouped according to a channel condition. A second device may be configured to receive the broadcast transmission and decode a portion of the broadcast transmission that is intended for the second device.