Abstract:
According to an aspect of the disclosure, there is provided a microwave reactor including a container for storing a bath fluid, a tube including an inlet at one end through which a target fluid is introduced, an outlet at another end through which the target fluid is discharged, wherein at least a portion of the tube is submerged in the bath fluid, and at least one radiator located outside the container and configured to irradiate microwaves into the container.
Abstract:
An embodiment of the present disclosure discloses a method of process variation compensating through activation value adjustment of an analog binarized neural network circuit that may recover a decrease in recognition rate performance up to an almost perfect level, even if a binarized neural network is implemented as an analog circuit such that recognition rate performance is decreased due to process variation.
Abstract:
Provided is a Group III-V compound semiconductor device. The device includes a substrate, a compound semiconductor layer provided on the substrate; and a buffer layer interposed between the compound semiconductor layer and the substrate. The compound semiconductor layer includes a first semiconductor area having a first conductivity type and a second semiconductor area having a second conductivity type. The buffer layer includes a high electron density area. In the buffer layer, an electron density of the high electron density area is higher than an electron density outside the high electron density area.
Abstract:
Provided is an electronic sheet including a graphitic material and a phage which displays a peptide having a binding ability to the graphitic material on its coat protein or a fragment thereof.
Abstract:
Provided is a peptide including X2SX1AAX2X3P (SEQ ID NO. 1), X2X2PX3X2AX3P (SEQ ID NO. 2), SX1AAX2X3P (SEQ ID NO. 3), or X2PX3X2AX3P (SEQ ID NO. 4), which bind to graphitic materials or volatile organic compounds.
Abstract:
A spin transistor includes: an input part that is made of a material exhibiting a spin Hall effect and configured to transfer electrons with a predetermined direction of spin to a connecting part; and the connecting part that receives the electrons with the predetermined direction of spin from the input part, rotates the spin of the electrons in accordance with a gate voltage applied to the gate electrode, and transfers the electrons to the output part.
Abstract:
In accordance with the present disclosure, a hybrid electronic sheet which exhibits superior electrical property and allows biomaterial functionalization and flexible device patterning may be provided by binding a graphitic material in colloidal state to a biomaterial capable of binding thereto specifically and nondestructively. Since the electronic sheet is an electronic sheet wherein a biomaterial and an electrical material (graphitic material) are hybridized, it exhibits good compatibility with biomaterials and can be further functionalized with, for example, an enzyme that selectively reacts with a biochemical substance. Accordingly, an electrical material and a chemical or biological material may be effectively nanostructurized and it can be realized as a multi-functional, high-performance electronic sheet.