Abstract:
The present invention discloses a method for preparing a compound thin film, a compound thin film prepared therefrom, and a solar cell including the compound thin film. An exemplary embodiment of the present invention provides a method for preparing a compound thin film, the method including: an electrolyte solution preparation step; a circuit configuration step; and a thin film production step in which a compound thin film with a specific pattern provided on the surface thereof is produced according to the difference in the thickness of the thin film between a region where light arrives and a region where light does not arrive.
Abstract:
Provided are a porous silicon carbide nanocomposite structure comprising nanowires that are self-formed, a preparation method thereof, and a catalyst comprising the same, in which the catalyst with excellent activity may be prepared by uniformly supporting a catalytically active component in meso-macro pores and nanowires.
Abstract:
Disclosed herein are a recombination layer containing nanoparticles and an integrated tandem solar cell manufactured using the same. The integrated tandem solar cell includes a first solar cell having a form in which a rear electrode, a light absorption layer, and a buffer layer are stacked, a recombination layer formed on the buffer layer and including a triple layer structure which has first and second transparent conductive layers with a transparent conductive nanoparticle layer disposed therebetween, and a second solar cell disposed on and bonded to the recombination layer and including a perovskite layer.
Abstract:
A localized surface plasmon resonance sensor may include a localized surface plasmon excitation layer including a chalcogenide material. The chalcogenide material may include: a first material including at least one of selenium (Se) and tellurium (Te); and a second material including at least one of germanium (Ge) and antimony (Sb). The localized surface plasmon excitation layer may be prepared by forming a thin film including the chalcogenide material and crystallizing the thin film to have a predetermined pattern by irradiating laser on the thin film.
Abstract:
Provided is a method of operating a neuron in a neuromorphic system. The method includes evaluating a membrane potential value at a corresponding time when receiving an input spike, time-modulating a synaptic weight of the membrane potential value and converting the time-modulated synaptic weight into a membrane potential value at a reference time, and generating an output spike when the membrane potential value at the reference time exceeds a certain threshold value. The membrane potential value at the reference time is represented by a floating point number including a predetermined bit of exponent and mantissa, and the floating point number includes time information. The method further includes accessing a memory and scanning a neural state variable when a timer is updated to “0” to update the neural state variable to an updated value at a reference time.
Abstract:
A neuromorphic device includes: a neuron block unit including a plurality of neurons; a synapse block unit including a plurality of synapses; and a topology block unit including a plurality of parallel Look-Up Table (LUT) modules including pre and post neuron elements configured with addresses of a presynaptic neuron and a postsynaptic neuron. Each of the plurality of neurons has an intrinsic address, each of the plurality of synapses has an intrinsic address. The parallel LUT module is partitioned based on a first synapse address among synapse addresses, and each of the partitions is indexed based on a second synapse address among the synapse addresses.
Abstract:
Provided are a method of preparing a magnesium oxide structure and a magnesium oxide structure prepared by using the method. The magnesium oxide structure has meso-macro pores, a large specific surface area, and high strength, thereby enabling production of a catalyst with high catalytic activity.
Abstract:
Provided are an autonomous driving system and a correction learning method for autonomous driving. The autonomous driving system includes a sensor configured to collect and output data required for autonomous driving, a first processor configured to output autonomous driving data on the basis of data input from the sensor, a second processor configured to output a driving data adjustment value on the basis of differences between the data input from the sensor, the autonomous driving data input from the first processor, and driving data input from driving by a human driver, and a driving part configured to perform driving on the basis of the autonomous driving data output from the first processor and the driving data adjustment value output from the second processor.