Abstract:
A neuromorphic circuit according to example embodiments of inventive concepts includes a first neuron array including a plurality of neuron circuits generating a spike signal; a first synapse array including a plurality of first synapse circuits to process and output the spike signal transmitted from the first neuron array; a second synapse array including a plurality of second synapse circuits; a first connecting block positioned between the first synapse array and the second synapse array and connecting the first synapse array and the second synapse array in response to a control signal; and a control logic to generate the control signal. The neuromorphic circuit may easily expand the size of the synapse element array to a desired size by using a connecting block.
Abstract:
A method for fabricating a nanoantenna array may include forming a resist layer on a substrate, forming a focusing layer having a dielectric microstructure array on the resist layer, diffusing light one-dimensionally in a specific direction by using a linear diffuser, forming an anisotropic pattern on the resist layer by illuminating the light diffused by the linear diffuser on the focusing layer and the resist layer, depositing a material suitable for a plasmonic resonance onto the substrate and the resist layer on which the pattern is formed, and forming a nanoantenna array on the substrate by removing the resist layer and the material deposited on the resist layer. A light diffusing angle by the linear diffuser and a size of the dielectric microstructure are determined based on an aspect ratio of the pattern to be formed.
Abstract:
A method for manufacturing an electrode for hydrogen production using a tungsten carbide nanoflake may include: forming a tungsten carbide nanoflake on a nanocrystalline diamond film by means of a chemical vapor deposition process in which hydrogen plasma is applied; and increasing activity of the tungsten carbide nanoflake to a hydrogen evolution reaction by removing an oxide layer or a graphene layer from a surface of the tungsten carbide nanoflake. Since an oxide layer and/or a graphene layer of a surface of tungsten carbide is removed by means of cyclic cleaning after tungsten carbide is formed, hydrogen evolution reaction (HER) activity of the tungsten carbide may be increased, thereby enhancing utilization as a catalyst electrode.
Abstract:
A flash memory device is provided. The flash memory device is disposed on a substrate, a channel layer made of a two-dimensional material, sources and drains disposed at both ends of the channel layer, a tunneling insulating layer having a first dielectric constant and a tunneling insulating layer disposed on the channel layer, a floating gate made of a two-dimensional material, a blocking insulating layer disposed on the floating gate and having a second dielectric constant greater than the first dielectric constant, and an upper gate disposed on the blocking insulating layer.
Abstract:
Embodiments of inventive concepts relate to a neuromorphic circuit including a flash memory-based spike regulator capable of generating a stable spike signal with a small number of devices. The neuromorphic circuit may generate a simple and stable spike signal using a flash memory-based spike regulator. Therefore, it is possible to implement a semiconductor neuromorphic circuit at low power and low cost by using the spike regulator of the present invention. Example embodiments of inventive concepts provide a neuromorphic circuit comprising a control signal generator for generating a control signal for generating a pulse signal; and a spike regulator for generating a spike signal in response to the control signal. Wherein the spike regulator comprises a first transistor for switching an input signal transmitted to one terminal to the other terminal in response to the control signal; and a first flash memory type transistor having a drain terminal connected to the other terminal of the first transistor and transferring the switched input signal to a source terminal as a spike signal.
Abstract:
Provided are phototherapeutic needle patches usable for phototherapy by using needle patches capable of injecting drugs or cosmetic substances to patients, and methods of manufacturing the same. A phototherapeutic needle patch may include a patch body attachable to skin of a patient, at least one microneedle protruding from the patch body, one end of the microneedle configured to deliver a drug through stratum corneum of the skin to inner tissues of the skin, and light grooves formed in a concave shape along a length direction of the microneedle in such a manner that therapeutic light radiated from a light source for phototherapy easily penetrates into the skin along the microneedle.
Abstract:
A flash memory device including multi-layered oxide for neuromorphic computing system is disclosed. According to embodiments, the flash memory device includes: a substrate; a channel layer disposed on the substrate; source/drain patterns disposed on both ends of the channel layer; a tunneling insulating layer disposed on the channel layer; a trapping layer disposed on the tunneling insulating layer and including a plurality of nitride layers; an intermediate barrier layer interposed within the trapping layer, and including an oxide layer, the oxide layer having a high dielectric constant; a blocking insulating layer disposed on the trapping layer; and an upper gate disposed on the blocking insulating layer.
Abstract:
The present disclosure relates to a nonlinearity compensation circuit for a memristive device. The circuit according to an embodiment includes at least one power source unit to apply an input pulse; a modulation unit connected to the at least one power source unit to adjust a pulse width of an update pulse to be applied to the memristive device; and the memristive device to which the modulated update pulse is applied.
Abstract:
A plasmonic nano-color coating layer includes a composite layer including a plurality of metal particle layers and a plurality of matrix layers and having a periodic multilayer structure in which the metal particle layers and the matrix layers are alternately arranged, a dielectric buffer layer located below the composite layer, and a mirror layer located below the dielectric buffer layer, wherein the color of the plasmonic nano-color coating layer is determined based on a nominal thickness of the metal particle layer and a separation between the metal particle layers.