摘要:
In a fuel cell assembly, nickel-based anodes are readily oxidized when exposed to oxygen as may happen through atmospheric invasion of the assembly during cool-down following shutdown of the assembly. Repeated anode oxidation and reduction can be destructive of the anodes, leading to cracking and failure. To prevent such oxygen migration, check valves and oxygen getter devices containing oxygen-scavenging material such as metallic nickel are provided in the reformate passageways leading to and from the anodes. The check valves preferably are closed by gravity. Oxidation of the oxygen-gettering material is readily reversed through reduction by reformate when the assembly is restarted.
摘要:
In a solid-oxide fuel cell system, a fuel/air manifold conveys air and tail gas fuel from the anodes in a fuel cell stack assembly to a tail gas combustor, producing a heated combustor exhaust having the highest mass flow in the system. The exhaust is passed through a heat exchanger to warm incoming cathode reaction air, and the exhaust is partially cooled by the exchange. From the heat exchanger, the exhaust gas is passed through a tempering jacket space surrounding the fuel cells in the stack. During start-up of the system, the exhaust gas is hotter than the stack and so the warm-up period is shortened. During normal operation of the system, the exhaust gas is cooler than the operating temperature and therefore cooling of the stack is assisted by contact with the exhaust gas.
摘要:
In a fuel cell assembly, nickel-based anodes are readily oxidized when exposed to oxygen as may happen through atmospheric invasion of the assembly during cool-down following shutdown of the assembly. Repeated anode oxidation and reduction can be destructive of the anodes, leading to cracking and failure. To prevent such oxygen migration, oxygen getter devices containing oxygen-gettering material such as metallic nickel are provided in the fuel passageways leading to and from the anodes. Oxidation of the oxygen-gettering material is readily reversed through reduction by fuel when the assembly is restarted.
摘要:
An electrical interconnect for a solid-oxide fuel cell stack assembly, including a novel sintering paste and an improved manufacturing process for an anode and cathode electrical contacts is disclosed. On the anode side, the paste contains a metallic oxide such as NiO, and an amount of sacrificial pore-forming particles, such as carbon particles or polymer spheres, which are vaporized during sintering of the paste, resulting in a very porous connection having good electrical conductivity and good adhesion. A preferred level of pore-former in the paste is about 40 volume percent. On the cathode side, the paste contains a noble metal such as for example, gold, platinum, palladium or rhodium, and an amount of the sacrificial pore-forming particles. The paste may be applied to the surfaces in a grid pattern or, because the resulting contact is porous after sintering, it may be applied as a continuous layer.
摘要:
A fuel cell assembly comprising a plurality of individual fuel cells, especially a solid-oxide fuel cell assembly. The cells are organized into a plurality of stacks, preferably two stacks, disposed side-by-side rather than end-to-end as in a prior art monolithic single stack. This arrangement makes the assembly compact physically, which can be highly desirable in some fuel cell applications. The stacks are connected conventionally in series electrically but are supplied with air and fuel in parallel to shorten the distribution manifolds and improve uniformity of distribution and exhaust among all the cells.
摘要:
An interconnect element for electrically connecting an anode and a cathode in adjacent fuel cells in a fuel cell stack, wherein said interconnect element has at least one featured surface including dimples, bosses, and/or pins arranged in a two-dimensional pattern. Preferably, both surfaces are featured, as by mechanical dimpling, embossing, or chemical etching, so that protrusions of the interconnect surface extend into either or both of the adjacent gas flow spaces to make electrical contact with the surfaces of the anode and cathode. This permits conduction of heat from the anode. The protrusions create turbulence in gas flowing through the flow spaces, which increases hydrogen consumption at the anode and hence electric output of the cell.
摘要:
Interconnects and perimeter spacers for a fuel cell stack are provided as flexible elements which can conform to non-planarities in a stack's electrolyte elements and thereby avoid inducing torsional stresses in the electrolyte elements. The interconnects are foil elements about 0.005 inches thick, formed of a superalloy such as Hastelloy, Haynes 230, or a stainless steel. The perimeter spacers comprise a plurality of laminate thin spacer elements, each thin spacer element being a laminate of superalloy and a “soft” material such as copper, nickel, or mica. The spacer elements can slide past one another; thus the perimeter spacers can be physically thick, to form the gas flow spaces within the stack, while also being torsionally flexible.
摘要:
An electrical interconnect for a fuel cell assembly comprising a peripheral frame formed of one or more materials having a coefficient of thermal expansion similar to that of adjacent elements to which the interconnect must be bonded and a central portion formed of a corrosion-resistant material for conducting electric current between adjacent fuel cells. Preferably, the central portion is attached to the peripheral frame via a brazed corrugated lap joint for relieving thermal expansion differences between the frame and the central portion. Preferably, the joint includes an interlayer of a ductile material, for example, a nickel, copper, silver or gold layer, which helps to relieve thermal stress between the frame and the central portion.
摘要:
An improved multiple-tube catalytic reformer comprising a tubular body containing a radiator core having a plurality of longitudinal cells for low-pressure flow-through of combustion gases, the core being formed preferably either by winding of corrugated metal or as an extruded metal monolith. A plurality of reformer tubes, preferably non-cylindrical, containing hydrocarbon catalyst are arrayed in longitudinal openings within the radiator core and preferably are brazed thereto to maximize heat transfer from the radiator core to the reformer tubes. During manufacture, the metal radiator core is economically bored by laser cutting to form the openings to admit the reformer tubes for brazing. Preferably, the reformer tubes are numbered, sized, shaped, and arrayed to minimize the longest conduction path in the radiator core to the center of any reformer tube.
摘要:
An improved multiple-tube catalytic reformer comprising a tubular body containing a radiator core having a plurality of longitudinal cells for low-pressure flow-through of combustion gases, the core being formed preferably either by winding of corrugated metal or as an extruded metal monolith. A plurality of reformer tubes, preferably non-cylindrical, containing hydrocarbon catalyst are arrayed in longitudinal openings within the radiator core and preferably are brazed thereto to maximize heat transfer from the radiator core to the reformer tubes. During manufacture, the metal radiator core is economically bored by laser cutting to form the openings to admit the reformer tubes for brazing. Preferably, the reformer tubes are numbered, sized, shaped, and arrayed to minimize the longest conduction path in the radiator core to the center of any reformer tube.