摘要:
A layer formation method is disclosed which comprises supplying gas to a discharge space, exciting the supplied gas at atmospheric pressure or at approximately atmospheric pressure by applying a high frequency electric field across the discharge space, and exposing a substrate to the excited gas, wherein the high frequency electric field is an electric field in which a first high frequency electric field and a second high frequency electric field are superposed, frequency &ohgr;2 of the second high frequency electric field is higher than frequency &ohgr;1 of the first high frequency electric field, strength V1 of the first high frequency electric field, strength V2 of the second high frequency electric field and strength IV of discharge starting electric field satisfy relationship V1≧IV>V2 or V1>IV≧V2, and power density of the second high frequency electric field is not less than 1 W/cm2.
摘要:
A layer formation method is disclosed which comprises supplying gas to a discharge space, exciting the supplied gas at atmospheric pressure or at approximately atmospheric pressure by applying a high frequency electric field across the discharge space, and exposing a substrate to the excited gas, wherein the high frequency electric field is an electric field in which a first high frequency electric field and a second high frequency electric field are superposed, frequency ω2 of the second high frequency electric field is higher than frequency ω1 of the first high frequency electric field, strength V1 of the first high frequency electric field, strength V2 of the second high frequency electric field and strength IV of discharge starting electric field satisfy relationship V1≧IV>V2 or V1>IV≧V2, and power density of the second high frequency electric field is not less than 1 W/cm2.
摘要翻译:公开了一种层形成方法,其包括向放电空间供应气体,通过在放电空间上施加高频电场,将基底暴露于激发气体,在大气压或大气压下激发供应的气体,其中, 高频电场是第一高频电场和第二高频电场叠加的电场,第二高频电场的频率ω2 <2>高于频率ω 1,第二高频电场的强度V SUB> 1,第二高频电场的强度V SUB> 2 < 放电起始电场的强度IV满足关系V 1 SUB> = IV> V 2或V 1 SUB> IV> = V 2 第二高频电场的功率密度不小于1W / cm 2。
摘要:
A film forming method comprising: supplying a reactive gas comprising a compound including a metal atom between facing electrodes; arranging a substrate between the electrodes; making the reactive gas in a plasma state by applying a voltage between the electrodes under atmospheric pressure or under a pressure in a vicinity of the atmospheric pressure and discharging; and forming a metal film on a surface of the substrate by supplying a reducing gas having a reducing property into a plasma atmosphere in which the reactive gas in the plasma state exists.
摘要:
A plasma treatment method for surface treatment of a substrate with an atmospheric pressure plasma treatment apparatus is disclosed. The apparatus has a first electrode and a second electrode opposed to each other, a discharge space between the opposed electrodes, a voltage application means for applying voltage across the discharge space, a gas supply means for supplying a reactive gas and an inert gas to the discharge space. The method is one wherein the reactive gas at the discharge space is excited at atmospheric pressure or at approximately atmospheric pressure by applying voltage through the voltage application means to generate discharge plasma, and a substrate is exposed to the discharge plasma to be subjected to surface treatment, and wherein the reactive gas is not directly in contact with the discharge surface of the first electrode or the second electrode.
摘要:
In a surface treatment for treating a surface of a subject of treating by a discharge-activated gas, under an atmospheric pressure or a pressure in the neighborhood of it, by arranging a second electrode at a position separated from the discharging section for generating said discharge-activated gas by a first electrode coated with a dielectric substance, and arranging a surface to be treated of a subject of treating between said plasma generating part, serving as a discharging section, and said second electrode, a surface treatment of said subject of treating is practiced.
摘要:
A method for forming a film comprising a first process and a second process, the first process comprising the steps of: supplying a discharge gas to a first discharge space where high frequency electric field A is generated at or near atmospheric pressure, whereby the discharge gas is excite; transferring energy of the excited discharge gas to a film forming gas, whereby the film forming gas is excited; and exposing a substrate to the film forming gas to form a film on the substrate, and the second process comprising the steps of: supplying a gas containing an oxidizing gas to a second discharge space where high frequency electric field B is generated at or near atmospheric pressure, whereby the gas containing the oxidizing gas is excite; and the film formed in the first process is exposed to the excited gas containing the oxidizing gas.
摘要:
A surface treatment method for enhancing hydrophobicity of the surface of a film support is disclosed, comprising subjecting at least one side of the surface to a gas-discharge plasma treatment in a gas phase atmosphere comprising (a) an inert gas comprising argon or helium and (b) a reactive gas comprising a hydrocarbon gas or fluorinated hydrocarbon gas. There is also disclosed a photothermographic material by the use of the support having been subjected to the surface treatment.
摘要:
A surface treatment method for enhancing hydrophobicity of the surface of a film support is disclosed, comprising subjecting at least one side of the surface to a gas-discharge plasma treatment in a gas phase atmosphere comprising (a) an inert gas comprising argon or helium and (b) a reactive gas comprising a hydrocarbon gas or fluorinated hydrocarbon gas. There is also disclosed a photothermographic material by the use of the support having been subjected to the surface treatment.
摘要:
The invention provides a method of producing ultra-fine particles and an apparatus therefor. A particle carrier is moved in a chamber which is decompresed and charged with inert gas. An evaporable material is heated so as to deposit evaporated ultra-fine particles onto a part of the moving particle carrier. The deposited ultra-fine particles are collected from the part of the moving particle carrier while evaporated ultra-fine particles deposit onto another part of the moving particle carrier.
摘要:
A method for forming a film comprising a first process and a second process, the first process comprising the steps of: supplying a discharge gas to a first discharge space where high frequency electric field A is generated at or near atmospheric pressure, whereby the discharge gas is excite; transferring energy of the excited discharge gas to a film forming gas, whereby the film forming gas is excited; and exposing a substrate to the film forming gas to form a film on the substrate, and the second process comprising the steps of: supplying a gas containing an oxidizing gas to a second discharge space where high frequency electric field B is generated at or near atmospheric pressure, whereby the gas containing the oxidizing gas is excite; and the film formed in the first process is exposed to the excited gas containing the oxidizing gas.