Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
A pneumatic tire comprises a tread reinforcing belt made of metallic cords, each of the metallic cords is made up of six to twelve metallic filaments whose diameter is not less than 0.15 mm but less than 0.25 mm, the six to twelve metallic filaments are grouped into a plurality of bunches each including two to four filaments, the filaments of each bunch are twisted together at a first twisting pitch, the bunches are twisted together into the cord at a final twist pitch Pc of from 10 to 40 mm, the first twisting pitch is more than the final twist pitch, and the bunches each include at least one waved filament which is two-dimensionally waved at wave pitches Pw in a range of from 5 to 30 times the diameter (d) of the filament and a wave height (h) in a range of from 0.2 to 3.0 times the diameter (d).
Abstract:
An evaporative emission control system for an internal combustion engine includes a canister for adsorbing evaporative fuel generated in the fuel tank, a communication passage connecting between first and second adsorbent chambers defined in the canister, a first introducing passage for introducing the generated evaporative fuel into the canister on an occasion other than at fueling, a purging passage for purging the evaporative fuel adsorbed into the canister to the intake passage, and an air-inlet passage communicating with the atmosphere. The first introducing passage, the second air-inlet passage and the purging passage are connected to the first adsorbent chamber. A second introducing passage is connected to the second adsorbent chamber, for introducing the evaporative fuel thereinto at refueling, and an additional passage having a cross sectional area larger than that of the air-inlet passage and communicating with the atmosphere is connected to the first adsorbent chamber. A first valve is arranged across the air-inlet passage, for closing the same at refueling, and a second valve across the additional passage, for opening the same at refueling.
Abstract:
A heavy duty pneumatic tire comprises a carcass ply of steel cords turned up around a bead core in each bead portion so as to form a pair of turned up portions and a main portion therebetween. The steel cords of the carcass ply are rubberized with a topping rubber having a hardness Ht1 of from 68 to 90 degrees. The bead core is composed of: a bead core main made of windings of a steel wire; a rubber coating penetrating into the bead core main and having a hardness Hb of from 78 to 90 degrees; and a bead core wrapping layer surrounding the bead core main and composed of at least one ply of parallel organic fiber cords rubberized with a topping rubber having a hardness Ht2 of from 70 to 90 degrees. The fineness of each of the organic fiber cords of the bead core wrapping layer is in a range of from 940 to 4200 dtex. The distances between the organic fiber cords of the bead core wrapping layer is in a range of from 0.3 to 1.4 mm. The organic fiber cords of the bead core wrapping layer are inclined at an angle α1 in a range of from 20 to 70 degrees with respect to the tire circumferential direction. A minimum distance between the carcass cords and the axially innermost winding of the steel wire of the bead core main is in a range of from 0.8 to 3.0 mm.
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
A rear panel is provided in rear of a connecting wall rising upwardly from a rear end of a front floor panel, and a fuel tank supported within a subframe is disposed beneath a lower surface of the rear floor panel. A gas fume absorbing canister and a muffler are juxtaposed in a lateral direction of a vehicle body in a space which is surrounded by a rear surface of a middle cross-member secured to a rear surface of the connecting wall, a front surface of the fuel tank and the lower surface of the rear floor panel. Thus, it is possible to shorten a purge passage connected from the canister to an engine, to protect the canister from collision against a stepping stone or the like, to insure the volume of a trunk room and to enhance the purging efficiency of the canister utilizing a heat of the muffler by reasonably disposing the canister at a rear portion of the vehicle body.
Abstract:
An evaporative fuel-processing system for an internal combustion engine includes a canister accommodating an adsorbent therein, for adsorbing evaporative fuel generated in a fuel tank of the engine, and a charging passage connecting between the canister and the fuel tank. A shutter valve is arranged in a fuel supply pipe of the fuel tank in the vicinity of an inlet end thereof, for isolating the interior of the fuel supply pipe from the atmosphere, and the shutter valve is disposed to be opened by the tip of a refueling gun when the latter is inserted into the fuel supply pipe. A pressure-intake port section is arranged in the fuel supply pipe at a side of the shutter valve closer to the main body of the fuel tank, for taking in pressure within the fuel supply pipe. A diaphragm valve is arranged in the charging passage, which has a casing, a diaphragm defining the interior of the casing into a first chamber and a second chamber, a valve element displaceable together with the diaphragm, an evaporative fuel outlet disposed to be opened and closed by the valve element, and a spring urging the valve element in a direction of closing the evaporative fuel outlet. The first chamber communicates with the pressure-intake port section, and the second chamber communicates with the interior of the fuel tank.
Abstract:
In an evaporative fuel processing device, a canister is divided into first, second, third and fourth chambers by partition walls. A control valve is provided in a communication passage which connects the second and third chambers to each other. A first charge passage is connected to an upper space in a fuel tank and to a port in the third chamber, and a second charge passage is connected to a fuel supply valve for the fuel tank and to a port in the first chamber. Further, a purge passage is connected to an intake passage of an internal combustion engine and to a port in the first chamber. The control valve is connected to an electronic control unit, and opened during refueling and during traveling of a vehicle and closed during parking of the vehicle. Thus, it is possible to reliably prevent an evaporative fuel from being released to the atmosphere, while the capacity of the canister to a minimum.
Abstract:
A canister includes a casing, a fuel reserve well defined at the bottom of the casing, an adsorbent layer provided in the casing for adsorbing fuel vapor, the adsorbent layer communicating with the fuel reserve well at a region of its lower portion and communicating with an atmosphere at its upper portion, a first communication passage defined so that the fuel reserve well communicates with a fuel system of an engine, and a second communication passage defined so that the fuel reserve well communicates with an intake system o f the engine. The second communication passage includes a purge chamber communicating with a region of the adsorbent layer other than the region of the adsorbent layer with which the fuel reserve well communicates, a first fuel outflow passage having a liquid fuel suction port open to the bottom of the fuel reserve well at its lower portion and a nozzle opening positioned in the purge chamber at its upper portion, and a second fuel outflow passage defined over the nozzle opening of the first fuel outflow passage for providing a fuel flow passage extending from the purge chamber to the suction system of the engine.
Abstract:
A heavy-load tire comprises a tread portion, a pair of sidewall portions, a pair of bead portions each with a bead core therein, a carcass comprising a carcass ply of cords including a main portion and a pair of turnup portions, and an inner liner made from air-impermeable rubber and disposed on the tire internal cavity surface. The inner liner includes a radially inner portion that terminates radial inside than a lateral reference line passing through the innermost axial point and outermost axial point of the bead core. A rubber thickness ta is in a range of from 2.5 to 5.0 mm ranging from the tire internal cavity surface to the cord of the carcass ply on the lateral reference line, and an inner liner thickness tb is smaller than the rubber thickness ta and is in a range of from 0.5 to 3.0 mm on the lateral reference line.