摘要:
Over a plug, a stopper insulating film made of an organic film is formed, followed by successive formation of an insulating film and a hard mask. In the presence of a patterned resist film, the hard mask is dry etched, whereby an interconnection groove pattern is transferred thereto. By ashing with oxygen plasma, the resist film is removed to form the interconnection-groove-pattern-transferred hard mask. At this time, the organic film constituting the stopper insulating film has been covered with the insulating film. Then, the insulating film, stopper insulating film and hard mask are removed to form the groove pattern of interconnection. Hydrogen annealing may be conducted after formation of the plug, or the stopper insulating film may be formed over the plug via an adhesion layer.
摘要:
Over a plug, a stopper insulating film made of an organic film is formed, followed by successive formation of an insulating film and a hard mask. In the presence of a patterned resist film, the hard mask is dry etched, whereby an interconnection groove pattern is transferred thereto. By ashing with oxygen plasma, the resist film is removed to form the interconnection-groove-pattern-transferred hard mask. At this time, the organic film constituting the stopper insulating film has been covered with the insulating film. Then, the insulating film, stopper insulating film and hard mask are removed to form the groove pattern of interconnection. Hydrogen annealing may be conducted after formation of the plug, or the stopper insulating film may be formed over the plug via an adhesion layer.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions. The disclosed process includes forming insulating films over wiring lines including uppermost wiring lines, the uppermost wiring lines having gaps between adjacent uppermost wiring lines. The insulating films include forming a silicon oxide film over the wiring lines and in the gaps between adjacent uppermost wiring lines, and forming a silicon nitride film over the silicon oxide film, the silicon nitride film being formed by plasma chemical vapor deposition. The silicon oxide film is formed to have a thickness of at least one-half of the gap between adjacent uppermost wiring lines, with the silicon nitride film being thicker than the silicon oxide film.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
An apparatus and method for surface treatment of a substance to be processed, which are capable of decreasing the number of foreign matters holding on the reverse side of the substance more than prior art like apparatus and method without largely decreasing a surface treating speed as compared with that of the prior art, by supplying ozone gas to the surface of the substance mounted on a supporting base. The supporting base has a heating part and a supporting part. There is provided a supporting material on the surface of the supporting part for partly supporting one side of the substance to be processed so that a required amount of gap may be formed between the substance to be processed and the supporting part. In the heating part is built a heater. And for a member constituting the supporting part is used a material having greater emissivity than a member constituting the heating part.