摘要:
An organic transistor array includes gate electrodes provided on a substrate, source and drain electrodes provided above or below the gate electrodes via a gate insulator layer, and an organic semiconductor layer opposing the gate electrodes via the gate insulator layer, and forming a channel region between mutually adjacent source and drain electrodes. The organic transistor array in a plan view is sectioned into sections each forming a single pixel, and each section has a closest packed structure.
摘要:
A disclosed active matrix substrate includes plural pixels arranged in a matrix form. At least one of a source electrode, a gate electrode, and a capacitor electrode of pixel component electrodes of each of the pixels is shared by adjacent pixels.
摘要:
A thin film transistor array is disclosed. The thin film transistor array includes plural gate electrodes formed on an insulation substrate, plural source electrodes formed above or under the gate electrodes via a gate insulation film so that the source electrodes cross the gate electrodes in a planar view, plural drain electrodes formed at corresponding positions surrounded by the gate electrodes and the source electrodes in a planar view in the same layer as that of the source electrodes, semiconductor layers formed via the gate insulation film to face the gate electrodes for forming corresponding channel regions between the source electrodes and the drain electrodes. The plural gate electrodes are linearly formed, and the channel regions are disposed to face the gate electrodes.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
A method for manufacturing a laminated structure includes a step of supplying a droplet of a functional fluid selectively to at least a first region of a high surface energy area formed in a wettability variable layer of the laminated structure. In the step, the droplet is supplied by inkjet printing, and a center position of the droplet is determined in such a manner as to satisfy both Equations (1) and (2) below: X D+2α) (1) X D+2α) (2), where X is a distance between a center position of the first region and the center position of the droplet, D is a diameter of the droplet when travelling, α is variation in a landing position of the droplet, L is width of the first region, and S is a gap between the first and the second regions.
摘要:
A disclosed laminated structure includes a wettability variable layer containing a wettability variable material whose surface energy changes when energy is applied thereto and including at least a high surface energy area having high surface energy and a low surface energy area having low surface energy; and a conductive layer disposed on the high surface energy area. The conductive layer includes a first high surface energy area, a second high surface energy area smaller in width than the first high surface energy area, and a third high surface energy area smaller in width than the second high surface energy area. The first high surface energy area and the second high surface energy area are connected by the third high surface energy area.
摘要:
A screen bowl type centrifugal separator which can not only eliminate the problem of the productivity being lowered resulting from the occurrence of clogging with the crystals in the screen part, but also minimize the amount of leakage of the object to be treated in the screen part. Inside of the hub (41) of the screw conveyor (40), a cleaning liquid receiving part (43) which receives the cleaning liquid for the cleaning nozzle (45) is provided, and further, in the cleaning liquid receiving part (43), a residual layer crystal cleaning liquid receiving part (46) which receives the cleaning liquid for cleaning the residual layer object to be treated in the screen part (30) is provided, being partitioned independently of the inside of the cleaning liquid receiving part (43). The cleaning liquid which has been supplied to the inside of the residual layer crystal cleaning liquid receiving part (46) is jet spouted directly toward the residual layer object to be treated from the outer circumferential edge of the flight (42) through the residual layer crystal cleaning liquid path provided along the direction of the helix of the flight (42), with no relation to said cleaning liquid receiving part (43).
摘要:
A method of manufacturing an interconnection member includes forming on a substrate a wettability changing layer containing a material in which critical surface tension is changed by giving energy; forming a depression part in the wettability changing layer by a laser ablation method using a laser of an ultraviolet region; and coating the depression part with an electrically conductive ink to form an electrically conductive part. At the same time when a pattern of the depression part is formed in the wettability changing layer, a pattern of a high surface energy area is formed as a result of the critical surface tension being changed.