摘要:
In one embodiment, a substrate processing apparatus, includes: a chamber; a first electrode disposed in the chamber; a second electrode disposed in the chamber to face the first electrode, and to hold a substrate; an RF power supply to apply an RF voltage with a frequency of 50 MHz or more to the second electrode; and a pulse power supply to repeatedly apply a voltage waveform including a negative voltage pulse and a positive voltage pulse of which delay time from the negative voltage pulse is 50 nano-seconds or less to the second electrode while superposing on the RF voltage.
摘要:
A pattern forming method includes forming a first photoresist on an underlying region, forming a second photoresist on the first photoresist, the second photoresist having an exposure sensitivity which is different from an exposure sensitivity of the first photoresist, radiating exposure light on the first and second photoresists via a photomask including a first transmissive region and a second transmissive region which cause a phase difference of 180° between transmissive light components passing therethrough, the first transmissive region and the second transmissive region being provided in a manner to neighbor in an irradiation region, and developing the first and second photoresists which have been irradiated with the exposure light, thereby forming a structure includes a first region where the underlying region is exposed, a second region where the first photoresist is exposed and a third region where the first photoresist and the second photoresist are left.
摘要:
A first silicon containing film, an organic material film, a second silicon containing film are formed. The second silicon containing film is patterned to have a narrow width pattern and a wide width pattern. The organic material film is patterned to have a narrow width pattern and a wide width pattern. A side wall is formed on a side surface of the second silicon containing film and the organic material film by coating with a third silicon containing film. The narrow width pattern of the second silicon containing film is removed by using a mask that covers the second silicon containing film patterned to have a wide width pattern and the side wall. Finally, the organic material film is removed.
摘要:
A method for manufacturing a semiconductor device includes forming a photo-resist pattern above a first film, implanting a predetermined dopant that increases an etching rate of the first film into the first film using the photo-resist pattern as a mask, thereby forming an implantation layer in the first film, and etching a first portion of the first film, which is at least a part of the implantation layer, using the photo-resist pattern as a mask.
摘要:
According to one embodiment, a method of manufacturing a device, includes forming a first core including a line portion extending between first and second regions and having a first width and a fringe having a dimension larger than the first width, forming a mask on the fringe and on a first sidewall on the first core, removing the first core so that a remaining portion having a dimension larger than the first width is formed below the mask, forming a second sidewall on a pattern corresponding the first sidewall and the remaining portion, the second sidewall having a second width less than the first width and facing a first interval less than the first width in the first region and facing a second interval larger than the first interval in the second region.
摘要:
According to one embodiment, a method of manufacturing a semiconductor device, includes forming first layer on first and second regions in substrate, first layer having first width in first region and having larger dimension than first width in second region, forming first sidewall on first layer, forming second layer covering first sidewall in the second region and forming third layer having second width smaller than first width on the side face of first sidewall having second width after removing first layer, forming second and third sidewalls having second width so that second and third sidewalls is adjacent to first sidewall across third layer by second width in first region and across second and third layers by second interval larger than second width in the second region.
摘要:
A method of manufacturing a semiconductor device according to an embodiment includes processing a second film 14 formed on a semiconductor substrate to a pattern including a plurality of linear parts and end portions formed in an end of each of the linear parts, having a width wider than the linear parts, forming a first pattern 16 by slimming the pattern, forming a second pattern including a first opening 180 that traverses the end portion 141a of the first pattern 16, etching the second film 14 exposed in the first opening 180, and dividing the end portion 141a into a first end portion 142a close to the linear part 140a and a second end portion 143a apart from the linear part 140a.
摘要:
A method for manufacturing a semiconductor device includes forming a photo-resist pattern above a first film, implanting a predetermined dopant that increases an etching rate of the first film into the first film using the photo-resist pattern as a mask, thereby forming an implantation layer in the first film, and etching a first portion of the first film, which is at least a part of the implantation layer, using the photo-resist pattern as a mask.
摘要:
A method of fabricating a semiconductor device according to an embodiment includes: forming a core material on a workpiece material; forming a cover film to cover the upper and side surfaces of the core material; after forming the cover film, removing the core material; after removing the core material, removing the cover film while leaving portions thereof located on the side surfaces of the core material, so as to form sidewall spacer masks; and etching the workpiece material by using the sidewall spacer masks as a mask.
摘要:
A method of manufacturing a semiconductor device according to one embodiment, includes: forming a first mask material film on a workpiece film formed on a semiconductor substrate; forming a resist pattern on the first mask material film; forming a second mask material film having a desired film thickness on the first mask material film so as to cover the resist pattern; carrying out etchback of the second mask material film so as to expose the resist pattern and the first mask material film; processing the resist pattern and the first mask material film simultaneously which are exposed, while leaving the second mask material film of which etchback is carried out; and processing the workpiece film which exposes under the first mask material film.