摘要:
Based on design data of a semiconductor integrated circuit, an impedance related to a power supply wire is calculated, and based on the calculated impedance, a frequency characteristic of power supply noise is analyzed. In calculation of an impedance, an impedance between power supplies which are different in potential, e.g., a main power supply and a ground, may be calculated. Alternatively, an impedance between power supplies which are substantially the same in potential, e.g., a main power supply and an N-well power supply, may be calculated. The calculated impedance includes a wire capacitance between power supply wires, a substrate resistance, an impedance of a package connected to the power supply wires, and so on. Thus, it is possible to provide a method for analyzing power supply noise of a semiconductor integrated circuit, which can be executed at an early stage of a design process with a small amount of calculation.
摘要:
An impedance of a power supply wire is calculated based on design data of a semiconductor integrated circuit, a frequency characteristic of the calculated impedance is obtained, and a design of the semiconductor integrated circuit is changed based on the obtained frequency characteristic. As the above-described impedance, an impedance between power supplies that are different in potential such as a power supply and a ground may be calculated, or an impedance between power supplies that are substantially the same in potential such as a power supply and an N-well power supply may be calculated. By a design modification, a wiring method, the number of pads, separation of power supplies, a type of package, a characteristic of an inductance element, a substrate structure, a distance between wires, a decoupling capacitance, a length of a wire, and a characteristic of a resistance element, for example, are changed.
摘要:
An impedance of a power supply wire is calculated based on design data of a semiconductor integrated circuit, a frequency characteristic of the calculated impedance is obtained, and a design of the semiconductor integrated circuit is changed based on the obtained frequency characteristic. As the above-described impedance, an impedance between power supplies that are different in potential such as a power supply and a ground may be calculated, or an impedance between power supplies that are substantially the same in potential such as a power supply and an N-well power supply may be calculated. By a design modification, a wiring method, the number of pads, separation of power supplies, a type of package, a characteristic of an inductance element, a substrate structure, a distance between wires, a decoupling capacitance, a length of a wire, and a characteristic of a resistance element, for example, are changed.
摘要:
There are contained the step of forming voltage waveform information by calculating a voltage waveform of each instance of a semiconductor integrated circuit at a power-supply terminal based on circuit information and analyzing the voltage waveform of each instance, the step of forming voltage abstraction information by abstracting the voltage waveform information, and the step of calculating a delay value of the instance based on the voltage abstraction information.
摘要:
In optimizing a necessary capacitance of a semiconductor integrated circuit, the capacitance optimization can be achieved with higher precision by optimizing an IR drop (voltage drop) while considering dynamically a cell activation rate. In other words, in estimating a power-supply capacitance inserted to suppress a voltage fluctuation of the power supply, an areal demerit can be reduced by reducing a necessary capacitance component as a whole while considering a cell activation rate in the circuit or by selecting the capacitance required to supplement only temporal portions whose power-supply fluctuation is wide after the estimation of a cell operating timing. Also, the process can be conducted in a short time at the early stage of design by using a wiring load model at the time of capacitance estimate.
摘要:
In optimizing a necessary capacitance of a semiconductor integrated circuit, the capacitance optimization can be achieved with higher precision by optimizing an IR drop (voltage drop) while considering dynamically a cell activation rate. In other words, in estimating a power-supply capacitance inserted to suppress a voltage fluctuation of the power supply, an areal demerit can be reduced by reducing a necessary capacitance component as a whole while considering a cell activation rate in the circuit or by selecting the capacitance required to supplement only temporal portions whose power-supply fluctuation is wide after the estimation of a cell operating timing. Also, the process can be conducted in a short time at the early stage of design by using a wiring load model at the time of capacitance estimate.
摘要:
It is an object of the invention to effectively absorb a power noise and to implement the stable operation of a circuit. The invention provides a semiconductor device comprising a bypass capacitor including an MOS structure having a gate electrode formed to be extended from a power wiring region to a portion provided under an empty region which is adjacent to the power wiring region and has no other functional layer, and formed through a capacitive insulating film on a diffusion region having one conductivity type, and a substrate contact formed under a ground wiring region and fixing a substrate potential, wherein the bypass capacitor has a contact to come in contact with the power wiring which is formed on a surface of the gate electrode and has the diffusion region having the one conductivity type and a diffusion region of the substrate contact connected to each other.
摘要:
In a method of analyzing a power noise based on the circuit information of a semiconductor integrated circuit device, the power noise is analyzed in consideration of the influence of the impedance of a substrate. Consequently, the impedance of the substrate which has not been conventionally considered is taken into consideration. Thus, precision in the analysis can be enhanced more greatly.
摘要:
In contrast with a known dynamic gate-level simulation method, a method of analyzing electromagnetic interference (an EMI analysis method) according to the present invention enables estimation of EMI noise, by means of calculating signal propagation of each node through use of the signal propagation probability technique, and calculating variation time of each node through use of “the Static timing analysis technique”. In short, the present invention is characterized in calculating a frequency characteristic from the relationship between toggle probability of each node and delay in each node.
摘要:
A method of analyzing electromagnetic interference in which an amount of electromagnetic interference from an LSI is analyzed, wherein the method includes: an equivalent power source current information calculating step of calculating information of an equivalent power source current flowing in a power source current, from circuit information of the LSI chip; an estimating step of considering at least one of power source information of a power source for supplying a current to the LSI chip, package information of a package for the semiconductor chip, and measurement system information of a measurement system for measuring characteristics of the semiconductor chip, as analysis control information, and of estimating total information in which the analysis control information is reflected in the circuit information, as an equivalent circuit; and a total information analyzing step of performing analysis in accordance with the total information which is estimated in the estimating step.